qmk-keychron-q3-colemak-dh/quantum/matrix.c

317 lines
7.5 KiB
C
Raw Normal View History

2015-08-21 16:46:53 +02:00
/*
Copyright 2012-2018 Jun Wako, Jack Humbert, Yiancar
2015-08-21 16:46:53 +02:00
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdbool.h>
2016-05-24 05:42:21 +02:00
#include "wait.h"
2015-08-21 16:46:53 +02:00
#include "print.h"
#include "debug.h"
#include "util.h"
#include "matrix.h"
2016-10-29 23:12:58 +02:00
#include "timer.h"
#include "quantum.h"
2016-10-29 23:12:58 +02:00
2016-10-28 21:21:38 +02:00
#if (MATRIX_COLS <= 8)
# define print_matrix_header() print("\nr/c 01234567\n")
# define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row))
# define matrix_bitpop(i) bitpop(matrix[i])
# define ROW_SHIFTER ((uint8_t)1)
#elif (MATRIX_COLS <= 16)
# define print_matrix_header() print("\nr/c 0123456789ABCDEF\n")
# define print_matrix_row(row) print_bin_reverse16(matrix_get_row(row))
# define matrix_bitpop(i) bitpop16(matrix[i])
# define ROW_SHIFTER ((uint16_t)1)
#elif (MATRIX_COLS <= 32)
# define print_matrix_header() print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n")
# define print_matrix_row(row) print_bin_reverse32(matrix_get_row(row))
# define matrix_bitpop(i) bitpop32(matrix[i])
# define ROW_SHIFTER ((uint32_t)1)
#endif
#ifdef MATRIX_MASKED
2016-10-29 23:12:58 +02:00
extern const matrix_row_t matrix_mask[];
2015-09-14 04:10:01 +02:00
#endif
#if (DIODE_DIRECTION == ROW2COL) || (DIODE_DIRECTION == COL2ROW)
static const pin_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
static const pin_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
#endif
2016-07-04 17:45:58 +02:00
/* matrix state(1:on, 0:off) */
2016-05-24 05:42:21 +02:00
static matrix_row_t matrix[MATRIX_ROWS];
2016-07-04 17:45:58 +02:00
2016-10-28 23:24:20 +02:00
2016-10-28 21:21:38 +02:00
#if (DIODE_DIRECTION == COL2ROW)
static void init_cols(void);
2016-10-29 23:12:58 +02:00
static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row);
2016-10-28 21:21:38 +02:00
static void unselect_rows(void);
static void select_row(uint8_t row);
static void unselect_row(uint8_t row);
#elif (DIODE_DIRECTION == ROW2COL)
2016-10-28 21:21:38 +02:00
static void init_rows(void);
2016-10-29 23:12:58 +02:00
static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col);
2016-10-28 21:21:38 +02:00
static void unselect_cols(void);
static void unselect_col(uint8_t col);
static void select_col(uint8_t col);
2016-05-24 05:42:21 +02:00
#endif
2015-08-21 16:46:53 +02:00
2015-10-26 21:32:37 +01:00
__attribute__ ((weak))
void matrix_init_quantum(void) {
matrix_init_kb();
}
2015-10-26 21:32:37 +01:00
__attribute__ ((weak))
void matrix_scan_quantum(void) {
matrix_scan_kb();
}
__attribute__ ((weak))
void matrix_init_kb(void) {
matrix_init_user();
}
__attribute__ ((weak))
void matrix_scan_kb(void) {
matrix_scan_user();
}
__attribute__ ((weak))
void matrix_init_user(void) {
}
__attribute__ ((weak))
void matrix_scan_user(void) {
}
2015-10-26 21:32:37 +01:00
2016-07-04 17:45:58 +02:00
inline
2016-05-24 05:42:21 +02:00
uint8_t matrix_rows(void) {
2015-08-21 16:46:53 +02:00
return MATRIX_ROWS;
}
2016-07-04 17:45:58 +02:00
inline
2016-05-24 05:42:21 +02:00
uint8_t matrix_cols(void) {
2015-08-21 16:46:53 +02:00
return MATRIX_COLS;
}
2016-05-24 05:42:21 +02:00
void matrix_init(void) {
2016-10-28 21:21:38 +02:00
2016-07-04 17:45:58 +02:00
// initialize row and col
2016-10-28 21:21:38 +02:00
#if (DIODE_DIRECTION == COL2ROW)
2016-07-04 17:45:58 +02:00
unselect_rows();
init_cols();
#elif (DIODE_DIRECTION == ROW2COL)
2016-10-28 21:21:38 +02:00
unselect_cols();
init_rows();
2016-10-29 17:39:03 +02:00
#endif
2016-10-28 21:21:38 +02:00
// initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
matrix[i] = 0;
}
matrix_init_quantum();
2015-08-21 16:46:53 +02:00
}
2016-07-04 17:45:58 +02:00
uint8_t matrix_scan(void)
{
2016-10-28 21:21:38 +02:00
#if (DIODE_DIRECTION == COL2ROW)
// Set row, read cols
2016-10-28 23:24:20 +02:00
for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
read_cols_on_row(matrix, current_row);
2016-10-29 23:12:58 +02:00
}
#elif (DIODE_DIRECTION == ROW2COL)
2016-10-28 21:21:38 +02:00
// Set col, read rows
2016-10-28 23:24:20 +02:00
for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) {
read_rows_on_col(matrix, current_col);
2016-10-29 23:12:58 +02:00
}
2016-07-04 17:45:58 +02:00
#endif
2016-05-24 05:42:21 +02:00
matrix_scan_quantum();
return 1;
2015-08-21 16:46:53 +02:00
}
//Deprecated.
2016-07-04 17:45:58 +02:00
bool matrix_is_modified(void)
{
return true;
2016-05-24 05:42:21 +02:00
}
2015-09-14 04:10:01 +02:00
2016-07-04 17:45:58 +02:00
inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
return (matrix[row] & ((matrix_row_t)1<col));
}
inline
matrix_row_t matrix_get_row(uint8_t row)
{
// Matrix mask lets you disable switches in the returned matrix data. For example, if you have a
// switch blocker installed and the switch is always pressed.
#ifdef MATRIX_MASKED
return matrix[row] & matrix_mask[row];
#else
2016-07-04 17:45:58 +02:00
return matrix[row];
#endif
2016-07-04 17:45:58 +02:00
}
void matrix_print(void)
{
2016-10-28 21:21:38 +02:00
print_matrix_header();
2016-07-04 17:45:58 +02:00
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
phex(row); print(": ");
2016-10-28 21:21:38 +02:00
print_matrix_row(row);
2016-07-04 17:45:58 +02:00
print("\n");
2015-08-21 16:46:53 +02:00
}
}
2016-07-04 17:45:58 +02:00
uint8_t matrix_key_count(void)
{
uint8_t count = 0;
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
2016-10-28 21:21:38 +02:00
count += matrix_bitpop(i);
2016-05-24 05:42:21 +02:00
}
2016-07-04 17:45:58 +02:00
return count;
2016-05-24 05:42:21 +02:00
}
2015-09-14 04:10:01 +02:00
2016-10-28 21:21:38 +02:00
#if (DIODE_DIRECTION == COL2ROW)
2016-07-04 17:45:58 +02:00
static void init_cols(void)
{
2016-10-28 21:21:38 +02:00
for(uint8_t x = 0; x < MATRIX_COLS; x++) {
setPinInputHigh(col_pins[x]);
2016-07-04 17:45:58 +02:00
}
2015-08-21 16:46:53 +02:00
}
2016-10-29 23:12:58 +02:00
static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row)
2016-07-04 17:45:58 +02:00
{
2016-10-29 23:12:58 +02:00
// Store last value of row prior to reading
matrix_row_t last_row_value = current_matrix[current_row];
2016-10-28 23:24:20 +02:00
// Clear data in matrix row
current_matrix[current_row] = 0;
2015-09-14 04:10:01 +02:00
2016-10-28 23:24:20 +02:00
// Select row and wait for row selecton to stabilize
select_row(current_row);
wait_us(30);
2016-10-28 21:21:38 +02:00
2016-10-28 23:24:20 +02:00
// For each col...
for(uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
// Select the col pin to read (active low)
uint8_t pin_state = readPin(col_pins[col_index]);
2016-10-28 23:24:20 +02:00
// Populate the matrix row with the state of the col pin
current_matrix[current_row] |= pin_state ? 0 : (ROW_SHIFTER << col_index);
}
2016-10-29 17:39:03 +02:00
// Unselect row
unselect_row(current_row);
2016-10-29 23:12:58 +02:00
return (last_row_value != current_matrix[current_row]);
2015-08-21 16:46:53 +02:00
}
2016-10-28 21:21:38 +02:00
static void select_row(uint8_t row)
{
setPinOutput(row_pins[row]);
writePinLow(row_pins[row]);
2016-10-28 21:21:38 +02:00
}
static void unselect_row(uint8_t row)
{
setPinInputHigh(row_pins[row]);
2016-10-28 21:21:38 +02:00
}
2016-07-04 17:45:58 +02:00
static void unselect_rows(void)
{
2016-10-28 21:21:38 +02:00
for(uint8_t x = 0; x < MATRIX_ROWS; x++) {
setPinInput(row_pins[x]);
2016-05-24 05:42:21 +02:00
}
2016-07-04 17:45:58 +02:00
}
#elif (DIODE_DIRECTION == ROW2COL)
2016-10-28 21:21:38 +02:00
static void init_rows(void)
2016-07-04 17:45:58 +02:00
{
2016-10-28 21:21:38 +02:00
for(uint8_t x = 0; x < MATRIX_ROWS; x++) {
setPinInputHigh(row_pins[x]);
2016-10-28 21:21:38 +02:00
}
}
2016-07-04 17:45:58 +02:00
2016-10-29 23:12:58 +02:00
static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col)
2016-10-28 21:21:38 +02:00
{
2016-10-29 23:12:58 +02:00
bool matrix_changed = false;
2016-10-28 21:21:38 +02:00
2016-10-28 23:24:20 +02:00
// Select col and wait for col selecton to stabilize
select_col(current_col);
wait_us(30);
2016-10-28 21:21:38 +02:00
2016-10-28 23:24:20 +02:00
// For each row...
2016-10-29 23:12:58 +02:00
for(uint8_t row_index = 0; row_index < MATRIX_ROWS; row_index++)
{
// Store last value of row prior to reading
matrix_row_t last_row_value = current_matrix[row_index];
2016-10-28 23:24:20 +02:00
2016-10-29 17:39:03 +02:00
// Check row pin state
if (readPin(row_pins[row_index]) == 0)
2016-10-29 17:39:03 +02:00
{
// Pin LO, set col bit
current_matrix[row_index] |= (ROW_SHIFTER << current_col);
}
else
{
// Pin HI, clear col bit
current_matrix[row_index] &= ~(ROW_SHIFTER << current_col);
}
2016-10-29 23:12:58 +02:00
// Determine if the matrix changed state
if ((last_row_value != current_matrix[row_index]) && !(matrix_changed))
{
matrix_changed = true;
}
2016-10-28 23:24:20 +02:00
}
2016-10-29 17:39:03 +02:00
// Unselect col
unselect_col(current_col);
2016-10-29 23:12:58 +02:00
return matrix_changed;
2016-10-28 21:21:38 +02:00
}
static void select_col(uint8_t col)
{
setPinOutput(col_pins[col]);
writePinLow(col_pins[col]);
2016-10-28 21:21:38 +02:00
}
static void unselect_col(uint8_t col)
{
setPinInputHigh(col_pins[col]);
2016-05-24 05:42:21 +02:00
}
2016-10-28 21:21:38 +02:00
static void unselect_cols(void)
{
for(uint8_t x = 0; x < MATRIX_COLS; x++) {
setPinInputHigh(col_pins[x]);
2016-10-28 21:21:38 +02:00
}
}
#endif