qmk-keychron-q3-colemak-dh/users/charlesrocket/apl.c

184 lines
4.9 KiB
C
Raw Normal View History

/* Copyright 2022 charlesrocket
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include QMK_KEYBOARD_H
enum unicode_names {
DIAMOND,
QUAD_DIAMOND,
DIAERESIS,
IBEAM,
MACRON,
DEL_TILDE,
LESS,
DEL_STILE,
LESS_EQUAL,
DELTA_STILE,
EQUALS,
CIRCLE_STILE,
GREATER_EQUAL,
CIRCLE_BACKSLASH,
GREATER,
CIRCLED_MINUS,
NOT_EQUAL,
CIRCLE_STAR,
OR,
DOWN_CARET_TILDE,
AND,
UP_CARET_TILDE,
MULT,
EXCL,
DIVISION,
QUAD_DIVIDE,
QUESTION_MARK,
OMEGA,
OMEGA_UNDERBAR,
EPSILON,
SMALL_ELEMENT,
EPSILON_UNDERBAR,
RHO,
TILDE,
TILDE_DIAERESIS,
UPWARDS_ARROW,
DOWNWARDS_ARROW,
IOTA,
IOTA_UNDERBAR,
WHITE_CIRCLE,
CIRCLE_DIAERESIS,
STAR_OPERATOR,
STAR_DIAERESIS,
LEFT_ARROW,
QUOTE_QUAD,
RIGHT_ARROW,
ZILDE,
ALPHA,
ALPHA_UNDERBAR,
LEFT_CEILING,
LEFT_FLOOR,
LOW_LINE,
NABLA,
INCREMENT,
DELTA_UNDERBAR,
RING_OPERATOR,
JOT_DIAERESIS,
APOSTROPHE,
QUAD_EQUAL,
QUAD,
SQUISH_QUAD,
DOWN_TACK_JOT,
IDENTICAL,
UP_TACK_JOT,
NOT_IDENTICAL,
RIGHT_TACK,
LEFT_TACK,
SUBSET,
SUPERSET,
CHI,
INTERSECTION,
UNION,
UP_TACK,
DOWN_TACK,
VERTICAL_LINE,
UP_SHOE_JOT,
COMMA_BAR,
BACKSLASH_BAR,
SLASH_BAR,
QUAD_COLON
};
const uint32_t unicode_map[] PROGMEM = {
[DIAMOND] = 0x25CA, // ◊ 0
[QUAD_DIAMOND] = 0x233A, // ⌺
[DIAERESIS] = 0x00A8, // ¨
[IBEAM] = 0x2336, // ⌶
[MACRON] = 0x00AF, // ¯
[DEL_TILDE] = 0x236B, // ⍫ 5
[LESS] = 0x003C, // <
[DEL_STILE] = 0x2352, // ⍒
[LESS_EQUAL] = 0x2264, // ≤
[DELTA_STILE] = 0x234B, // ⍋
[EQUALS] = 0x003D, // = 10
[CIRCLE_STILE] = 0x233D, // ⌽
[GREATER_EQUAL] = 0x2265, // ≥
[CIRCLE_BACKSLASH] = 0x2349, // ⍉
[GREATER] = 0x003E, // >
[CIRCLED_MINUS] = 0x2296, // ⊖ 15
[NOT_EQUAL] = 0x2260, // ≠
[CIRCLE_STAR] = 0x235F, // ⍟
[OR] = 0x2228, //
[DOWN_CARET_TILDE] = 0x2371, // ⍱
[AND] = 0x2227, // ∧ 20
[UP_CARET_TILDE] = 0x2372, // ⍲
[MULT] = 0x00D7, // ×
[EXCL] = 0x0021, // !
[DIVISION] = 0x00F7, // ÷
[QUAD_DIVIDE] = 0x2339, // ⌹ 25
[QUESTION_MARK] = 0x003F, // ?
[OMEGA] = 0x2375, // ⍵
[OMEGA_UNDERBAR] = 0x2379, // ⍹
[EPSILON] = 0x03B5, // ε
[SMALL_ELEMENT] = 0x220A, // ∊ 30
[EPSILON_UNDERBAR] = 0x2377, // ⍷
[RHO] = 0x2374, //
[TILDE] = 0x007E, // ~
[TILDE_DIAERESIS] = 0x2368, // ⍨
[UPWARDS_ARROW] = 0x2191, // ↑ 35
[DOWNWARDS_ARROW] = 0x2193, // ↓
[IOTA] = 0x2373, //
[IOTA_UNDERBAR] = 0x2378, // ⍸
[WHITE_CIRCLE] = 0x25CB, // ○
[CIRCLE_DIAERESIS] = 0x2365, // ⍥ 40
[STAR_OPERATOR] = 0x22C6, // ⋆
[STAR_DIAERESIS] = 0x2363, // ⍣
[LEFT_ARROW] = 0x2190, // ←
[QUOTE_QUAD] = 0x235E, // ⍞
[RIGHT_ARROW] = 0x2192, // → 45
[ZILDE] = 0x236C, // ⍬
[ALPHA] = 0x237A, //
[ALPHA_UNDERBAR] = 0x2376, // ⍶
[LEFT_CEILING] = 0x2308, // ⌈
[LEFT_FLOOR] = 0x230A, // ⌊ 50
[LOW_LINE] = 0x005F, // _
[NABLA] = 0x2207, // ∇
[INCREMENT] = 0x2206, // ∆
[DELTA_UNDERBAR] = 0x2359, // ⍙
[RING_OPERATOR] = 0x2218, // ∘ 55
[JOT_DIAERESIS] = 0x2364, // ⍤
[APOSTROPHE] = 0x0027, // '
[QUAD_EQUAL] = 0x2338, // ⌸
[QUAD] = 0x2395, // ⎕
[SQUISH_QUAD] = 0x2337, // ⌷ 60
[DOWN_TACK_JOT] = 0x234E, // ⍎
[IDENTICAL] = 0x2261, // ≡
[UP_TACK_JOT] = 0x2355, // ⍕
[NOT_IDENTICAL] = 0x2262, // ≢
[RIGHT_TACK] = 0x22A2, // ⊢ 65
[LEFT_TACK] = 0x22A3, // ⊣
[SUBSET] = 0x2282, // ⊂
[SUPERSET] = 0x2283, // ⊃
[CHI] = 0x03C7, // χ
[INTERSECTION] = 0x2229, // ∩ 70
[UNION] = 0x222A, //
[UP_TACK] = 0x22A5, // ⊥
[DOWN_TACK] = 0x22A4, //
[VERTICAL_LINE] = 0x007C, // |
[UP_SHOE_JOT] = 0x235D, // ⍝ 75
[COMMA_BAR] = 0x236A, // ⍪
[BACKSLASH_BAR] = 0x2340, // ⍀
[SLASH_BAR] = 0x233F, // ⌿
[QUAD_COLON] = 0x2360, // ⍠ 79
};