qmk-keychron-q3-colemak-dh/keyboards/rgbkb/common/touch_encoder.c

312 lines
9.8 KiB
C
Raw Normal View History

2021-06-26 07:00:21 +02:00
/*
* ----------------------------------------------------------------------------
* "THE BEER-WARE LICENSE" (Revision 42):
* <https://github.com/XScorpion2> wrote this file. As long as you retain this
* notice you can do whatever you want with this stuff. If we meet some day, and
* you think this stuff is worth it, you can buy me a beer in return. Ryan Caltabiano
* ----------------------------------------------------------------------------
*/
#include "i2c_master.h"
#include "keyboard.h"
#include "touch_encoder.h"
#include "print.h"
#include "wait.h"
#include "timer.h"
// for memcpy
#include <string.h>
#include <transactions.h>
#define I2C_ADDRESS 0x1C
#define CALIBRATION_BIT 0x80
#define OVERFLOW_BIT 0x40
#define SLIDER_BIT 0x02
#ifndef TOUCH_UPDATE_INTERVAL
# define TOUCH_UPDATE_INTERVAL 33
#endif
enum { // QT2120 registers
QT_CHIP_ID = 0,
QT_FIRMWARE_VERSION,
QT_DETECTION_STATUS,
QT_KEY_STATUS,
QT_SLIDER_POSITION = 5,
QT_CALIBRATE,
QT_RESET,
QT_LP,
QT_TTD,
QT_ATD,
QT_DI,
QT_TRD,
QT_DHT,
QT_SLIDER_OPTION,
QT_CHARDE_TIME,
QT_KEY0_DTHR,
QT_KEY1_DTHR,
QT_KEY2_DTHR,
QT_KEY3_DTHR,
QT_KEY4_DTHR,
QT_KEY5_DTHR,
QT_KEY6_DTHR,
QT_KEY7_DTHR,
QT_KEY8_DTHR,
QT_KEY9_DTHR,
QT_KEY10_DTHR,
QT_KEY11_DTHR,
QT_KEY0_CTRL,
QT_KEY1_CTRL,
QT_KEY2_CTRL,
QT_KEY3_CTRL,
QT_KEY4_CTRL,
QT_KEY5_CTRL,
QT_KEY6_CTRL,
QT_KEY7_CTRL,
QT_KEY8_CTRL,
QT_KEY9_CTRL,
QT_KEY10_CTRL,
QT_KEY11_CTRL,
QT_KEY0_PULSE_SCALE,
QT_KEY1_PULSE_SCALE,
QT_KEY2_PULSE_SCALE,
QT_KEY3_PULSE_SCALE,
QT_KEY4_PULSE_SCALE,
QT_KEY5_PULSE_SCALE,
QT_KEY6_PULSE_SCALE,
QT_KEY7_PULSE_SCALE,
QT_KEY8_PULSE_SCALE,
QT_KEY9_PULSE_SCALE,
QT_KEY10_PULSE_SCALE,
QT_KEY11_PULSE_SCALE,
QT_KEY0_SIGNAL,
QT_KEY1_SIGNAL = 54,
QT_KEY2_SIGNAL = 56,
QT_KEY3_SIGNAL = 58,
QT_KEY4_SIGNAL = 60,
QT_KEY5_SIGNAL = 62,
QT_KEY6_SIGNAL = 64,
QT_KEY7_SIGNAL = 66,
QT_KEY8_SIGNAL = 68,
QT_KEY9_SIGNAL = 70,
QT_KEY10_SIGNAL = 72,
QT_KEY11_SIGNAL = 74,
QT_KEY0_REFERENCE = 76,
QT_KEY1_REFERENCE = 78,
QT_KEY2_REFERENCE = 80,
QT_KEY3_REFERENCE = 82,
QT_KEY4_REFERENCE = 84,
QT_KEY5_REFERENCE = 86,
QT_KEY6_REFERENCE = 88,
QT_KEY7_REFERENCE = 90,
QT_KEY8_REFERENCE = 92,
QT_KEY9_REFERENCE = 94,
QT_KEY10_REFERENCE = 96,
QT_KEY11_REFERENCE = 98,
};
bool touch_initialized = false;
bool touch_disabled = false;
uint8_t touch_handness = 0;
// touch_raw & touch_processed store the Detection Status, Key Status (x2), and Slider Position values
uint8_t touch_raw[4] = { 0 };
uint8_t touch_processed[4] = { 0 };
uint16_t touch_timer = 0;
uint16_t touch_update_timer = 0;
// For split transport only
typedef struct {
uint8_t position;
uint8_t taps;
} slave_touch_status_t;
bool touch_slave_init = false;
slave_touch_status_t touch_slave_state = { 0, 0 };
static bool write_register8(uint8_t address, uint8_t data) {
i2c_status_t status = i2c_write_register((I2C_ADDRESS << 1), address, &data, sizeof(data), I2C_TIMEOUT);
2021-06-26 07:00:21 +02:00
if (status != I2C_STATUS_SUCCESS) {
xprintf("write_register8 %d failed %d\n", address, status);
}
return status == I2C_STATUS_SUCCESS;
}
static bool read_register(uint8_t address, uint8_t* data, uint16_t length) {
i2c_status_t status = i2c_read_register((I2C_ADDRESS << 1), address, data, length, I2C_TIMEOUT);
2021-06-26 07:00:21 +02:00
if (status != I2C_STATUS_SUCCESS) {
xprintf("read_register %d failed %d\n", address, status);
return false;
}
return true;
}
void touch_encoder_init(void) {
i2c_init();
touch_handness = is_keyboard_left() ? 0 : 1;
// Set QT to slider mode
touch_initialized = write_register8(QT_SLIDER_OPTION, 0x80);
touch_initialized &= write_register8(QT_TTD, 4); // Toward Drift - 20 @ 3.2s
touch_initialized &= write_register8(QT_ATD, 1); // Away Drift - 5 @ 0.8s
touch_initialized &= write_register8(QT_DI, 4); // Detection Integrator - 4
touch_initialized &= write_register8(QT_TRD, 0); // Touch Recall - 48
touch_encoder_calibrate();
}
__attribute__((weak)) bool touch_encoder_tapped_kb(uint8_t index, uint8_t section) { return touch_encoder_tapped_user(index, section); }
__attribute__((weak)) bool touch_encoder_update_kb(uint8_t index, bool clockwise) { return touch_encoder_update_user(index, clockwise); }
__attribute__((weak)) bool touch_encoder_tapped_user(uint8_t index, uint8_t section) { return true; }
__attribute__((weak)) bool touch_encoder_update_user(uint8_t index, bool clockwise) { return true; }
static void touch_encoder_update_tapped(void) {
// Started touching, being counter for TOUCH_TERM
if (touch_processed[0] & SLIDER_BIT) {
touch_timer = timer_read() + TOUCH_TERM;
return;
}
// Touch held too long, bail
if (timer_expired(timer_read(), touch_timer)) return;
uint8_t section = touch_processed[3] / (UINT8_MAX / TOUCH_SEGMENTS + 1);
xprintf("tap %d %d\n", touch_handness, section);
if (is_keyboard_master()) {
if (!touch_disabled) {
touch_encoder_tapped_kb(touch_handness, section);
}
}
else {
touch_slave_state.taps ^= (1 << section);
}
}
static void touch_encoder_update_position_common(uint8_t* position, uint8_t raw, uint8_t index) {
int8_t delta = (*position - raw) / TOUCH_RESOLUTION;
bool clockwise = raw > *position;
if (delta == 0) return;
// Don't store raw directly, as we want to ensure any remainder is kept and used next time this is called
*position -= delta * TOUCH_RESOLUTION;
xprintf("pos %d %d\n", index, raw);
//uint8_t u_delta = delta < 0 ? -delta : delta;
if (!touch_disabled) {
//for (uint8_t i = 0; i < u_delta; i++)
touch_encoder_update_kb(index, clockwise);
}
}
static void touch_encoder_update_position(void) {
// If the user touchs and moves enough, expire touch_timer faster and do encoder position logic instead
if (!timer_expired(timer_read(), touch_timer)) {
if ((uint8_t)(touch_raw[3] - touch_processed[3]) <= TOUCH_DEADZONE) return;
touch_timer = timer_read();
}
if (is_keyboard_master()) {
touch_encoder_update_position_common(&touch_processed[3], touch_raw[3], touch_handness);
}
else {
touch_slave_state.position = touch_raw[3];
}
}
void touch_encoder_update_slave(slave_touch_status_t slave_state) {
if (!touch_slave_init) {
touch_slave_state = slave_state;
touch_slave_init = true;
return;
}
if (touch_slave_state.position != slave_state.position) {
// Did a new slide event start?
uint8_t mask = (1 << 7);
if ((touch_slave_state.taps & mask) != (slave_state.taps & mask)) {
touch_slave_state.position = slave_state.position;
}
touch_encoder_update_position_common(&touch_slave_state.position, slave_state.position, !touch_handness);
}
if (touch_slave_state.taps != slave_state.taps) {
if (!touch_disabled) {
for (uint8_t section = 0; section < TOUCH_SEGMENTS; section++) {
uint8_t mask = (1 << section);
if ((touch_slave_state.taps & mask) != (slave_state.taps & mask)) {
xprintf("tap %d %d\n", !touch_handness, section);
touch_encoder_tapped_kb(!touch_handness, section);
}
}
}
touch_slave_state.taps = slave_state.taps;
}
}
void touch_encoder_update(int8_t transaction_id) {
#if TOUCH_UPDATE_INTERVAL > 0
if (!timer_expired(timer_read(), touch_update_timer)) return;
touch_update_timer = timer_read() + TOUCH_UPDATE_INTERVAL;
#endif
if (is_keyboard_master()) {
slave_touch_status_t slave_state;
if (transaction_rpc_exec(transaction_id, sizeof(bool), &touch_disabled, sizeof(slave_touch_status_t), &slave_state)) {
if (memcmp(&touch_slave_state, &slave_state, sizeof(slave_touch_status_t)))
touch_encoder_update_slave(slave_state);
}
}
if (!touch_initialized) return;
2021-06-26 07:00:21 +02:00
read_register(QT_DETECTION_STATUS, &touch_raw[0], sizeof(touch_raw));
touch_processed[1] = touch_raw[1];
touch_processed[2] = touch_raw[2];
if (touch_raw[0] != touch_processed[0]) {
uint8_t delta = touch_raw[0] ^ touch_processed[0];
touch_processed[0] = touch_raw[0];
// When calibrating, normal sensor behavior is supended
if (delta & CALIBRATION_BIT) {
xprintf("calibration %d\n", touch_processed[0] >> 7 & 1);
}
if (delta & OVERFLOW_BIT) {
xprintf("overflow %d\n", touch_processed[0] >> 6 & 1);
}
if (delta & SLIDER_BIT) {
touch_processed[3] = touch_raw[3];
if (!is_keyboard_master()) {
touch_slave_state.position = touch_raw[3];
touch_slave_state.taps ^= (1 << 7);
}
touch_encoder_update_tapped();
}
}
if ((touch_raw[0] & SLIDER_BIT) && touch_processed[3] != touch_raw[3]) {
touch_encoder_update_position();
}
}
void touch_encoder_calibrate(void) {
if (!touch_initialized) return;
write_register8(QT_CALIBRATE, 0x01);
}
bool touch_encoder_is_calibrating(void) {
2021-06-26 07:00:21 +02:00
return touch_raw[0] & CALIBRATION_BIT;
}
void touch_encoder_toggle(void) {
touch_disabled = !touch_disabled;
}
bool touch_encoder_is_on(void) {
return !touch_disabled;
2021-06-26 07:00:21 +02:00
}
void touch_encoder_slave_sync(uint8_t initiator2target_buffer_size, const void* initiator2target_buffer, uint8_t target2initiator_buffer_size, void* target2initiator_buffer) {
touch_disabled = *(bool*)initiator2target_buffer;
memcpy(target2initiator_buffer, &touch_slave_state, sizeof(slave_touch_status_t));
}