qmk-keychron-q3-colemak-dh/keyboards/infinity60/led_controller.c

462 lines
14 KiB
C
Raw Normal View History

2017-04-06 22:45:15 +02:00
/*
Copyright 2016 flabbergast <s3+flabbergast@sdfeu.org>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* LED controller code
2017-05-08 23:35:08 +02:00
* IS31FL3731C matrix LED driver from ISSI
2017-04-06 22:45:15 +02:00
* datasheet: http://www.issi.com/WW/pdf/31FL3731C.pdf
*/
#include "ch.h"
#include "hal.h"
#include "print.h"
2017-04-13 08:32:38 +02:00
#include "led.h"
#include "action_layer.h"
#include "host.h"
2017-04-06 22:45:15 +02:00
#include "led_controller.h"
#include "suspend.h"
#include "usb_main.h"
/* Infinity60 LED MAP
2017-04-06 22:45:15 +02:00
- digits mean "row" and "col", i.e. 45 means C4-5 in the IS31 datasheet, matrix A
11 12 13 14 15 16 17 18 21 22 23 24 25 26 27*
28 31 32 33 34 35 36 37 38 41 42 43 44 45
46 47 48 51 52 53 54 55 56 57 58 61 62
63 64 65 66 67 68 71 72 73 74 75 76 77*
78 81 82 83 84 85 86 87
*Unused in Alphabet Layout
2017-04-06 22:45:15 +02:00
*/
/*
each page has 0xB4 bytes
0 - 0x11: LED control (on/off):
order: CA1, CB1, CA2, CB2, .... (CA - matrix A, CB - matrix B)
CAn controls Cn-8 .. Cn-1 (LSbit)
0x12 - 0x23: blink control (like "LED control")
0x24 - 0xB3: PWM control: byte per LED, 0xFF max on
order same as above (CA 1st row (8bytes), CB 1st row (8bytes), ...)
*/
2017-05-08 23:35:08 +02:00
// Which LED should be used for CAPS LOCK indicator
2017-04-06 22:45:15 +02:00
#if !defined(CAPS_LOCK_LED_ADDRESS)
2017-04-13 08:32:38 +02:00
#define CAPS_LOCK_LED_ADDRESS 46
#endif
#if !defined(NUM_LOCK_LED_ADDRESS)
2017-04-13 08:32:38 +02:00
#define NUM_LOCK_LED_ADDRESS 85
2017-04-06 22:45:15 +02:00
#endif
/* Which LED should breathe during sleep */
#if !defined(BREATHE_LED_ADDRESS)
#define BREATHE_LED_ADDRESS CAPS_LOCK_LED_ADDRESS
#endif
/* =================
* ChibiOS I2C setup
* ================= */
static const I2CConfig i2ccfg = {
400000 // clock speed (Hz); 400kHz max for IS31
};
/* ==============
* variables
* ============== */
// internal communication buffers
uint8_t tx[2] __attribute__((aligned(2)));
uint8_t rx[1] __attribute__((aligned(2)));
// buffer for sending the whole page at once (used also as a temp buffer)
uint8_t full_page[0xB4+1] = {0};
// LED mask (which LEDs are present, selected by bits)
// IC60 pcb uses only CA matrix.
// Each byte is a control pin for 8 leds ordered 8-1
const uint8_t all_on_leds_mask[0x12] = {
2017-04-06 22:45:15 +02:00
0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF,
0x00, 0xFF, 0x00, 0xFF, 0x00, 0x7F, 0x00, 0x00, 0x00
2017-04-06 22:45:15 +02:00
};
// array to hold brightness pwm steps
const uint8_t pwm_levels[5] = {
0x00, 0x16, 0x4E, 0xA1, 0xFF
};
// array to write to pwm register
uint8_t pwm_register_array[9] = {0};
2017-04-06 22:45:15 +02:00
/* ============================
* communication functions
* ============================ */
msg_t is31_select_page(uint8_t page) {
tx[0] = IS31_COMMANDREGISTER;
tx[1] = page;
return i2cMasterTransmitTimeout(&I2CD1, IS31_ADDR_DEFAULT, tx, 2, NULL, 0, US2ST(IS31_TIMEOUT));
}
msg_t is31_write_data(uint8_t page, uint8_t *buffer, uint8_t size) {
is31_select_page(page);
return i2cMasterTransmitTimeout(&I2CD1, IS31_ADDR_DEFAULT, buffer, size, NULL, 0, US2ST(IS31_TIMEOUT));
}
msg_t is31_write_register(uint8_t page, uint8_t reg, uint8_t data) {
is31_select_page(page);
tx[0] = reg;
tx[1] = data;
return i2cMasterTransmitTimeout(&I2CD1, IS31_ADDR_DEFAULT, tx, 2, NULL, 0, US2ST(IS31_TIMEOUT));
}
msg_t is31_read_register(uint8_t page, uint8_t reg, uint8_t *result) {
is31_select_page(page);
2017-04-06 22:45:15 +02:00
tx[0] = reg;
return i2cMasterTransmitTimeout(&I2CD1, IS31_ADDR_DEFAULT, tx, 1, result, 1, US2ST(IS31_TIMEOUT));
}
/* ========================
* initialise the IS31 chip
* ======================== */
void is31_init(void) {
// just to be sure that it's all zeroes
__builtin_memset(full_page,0,0xB4+1);
// zero function page, all registers (assuming full_page is all zeroes)
is31_write_data(IS31_FUNCTIONREG, full_page, 0xD + 1);
palSetPadMode(GPIOB, 16, PAL_MODE_OUTPUT_PUSHPULL);
palSetPad(GPIOB, 16);
chThdSleepMilliseconds(10);
// software shutdown
is31_write_register(IS31_FUNCTIONREG, IS31_REG_SHUTDOWN, 0);
chThdSleepMilliseconds(10);
// software shutdown disable (i.e. turn stuff on)
is31_write_register(IS31_FUNCTIONREG, IS31_REG_SHUTDOWN, IS31_REG_SHUTDOWN_ON);
chThdSleepMilliseconds(10);
// zero all LED registers on all 8 pages
uint8_t i;
for(i=0; i<8; i++) {
is31_write_data(i, full_page, 0xB4 + 1);
chThdSleepMilliseconds(1);
}
}
/* ==================
* LED control thread
* ================== */
#define LED_MAILBOX_NUM_MSGS 5
static msg_t led_mailbox_queue[LED_MAILBOX_NUM_MSGS];
mailbox_t led_mailbox;
static THD_WORKING_AREA(waLEDthread, 256);
static THD_FUNCTION(LEDthread, arg) {
(void)arg;
chRegSetThreadName("LEDthread");
uint8_t i;
uint8_t control_register_word[2] = {0};//2 bytes: register address, byte to write
uint8_t led_control_reg[0x13] = {0};//led control register start address + 0x12 bytes
//persistent status variables
uint8_t pwm_step_status, page_status;
//mailbox variables
2017-05-08 20:57:40 +02:00
uint8_t temp, msg_type, msg_pin, msg_col, msg_led;
msg_t msg;
// initialize persistent variables
2017-04-15 03:20:12 +02:00
pwm_step_status = 4; //full brightness
page_status = 0; //start frame 0 (all off/on)
2017-04-06 22:45:15 +02:00
while(true) {
// wait for a message (asynchronous)
// (messages are queued (up to LED_MAILBOX_NUM_MSGS) if they can't
// be processed right away)
chMBFetch(&led_mailbox, &msg, TIME_INFINITE);
2017-05-08 20:57:40 +02:00
msg_col = (msg >> 24) & 0xFF;//if needed
2017-05-08 23:35:08 +02:00
msg_pin = (msg >> 16) & 0XFF;//if needed (e.g. SET_FULL_ROW)
2017-05-08 20:57:40 +02:00
msg_type = (msg >> 8) & 0xFF; //second byte is msg type
msg_led = (msg) & 0xFF; //first byte is action information
2017-04-06 22:45:15 +02:00
2017-04-15 03:20:12 +02:00
switch (msg_type){
2017-05-08 20:57:40 +02:00
case SET_FULL_ROW:
//write full byte to pin address, msg_pin = pin #, msg_led = byte to write
//writes only to current page
write_led_byte(page_status,msg_pin,msg_led);
break;
2017-04-15 03:20:12 +02:00
case OFF_LED:
//on/off/toggle single led, msg_led = row/col of led
2017-04-15 03:20:12 +02:00
set_led_bit(7, control_register_word, msg_led, 0);
is31_write_data (7, control_register_word, 0x02);
break;
case ON_LED:
set_led_bit(7, control_register_word, msg_led, 1);
is31_write_data (7, control_register_word, 0x02);
break;
case TOGGLE_LED:
set_led_bit(7, control_register_word, msg_led, 2);
is31_write_data (7, control_register_word, 0x02);
break;
2017-05-01 01:27:46 +02:00
case BLINK_OFF_LED:
//on/off/toggle single led, msg_led = row/col of led
set_led_bit(7, control_register_word, msg_led, 4);
is31_write_data (7, control_register_word, 0x02);
break;
case BLINK_ON_LED:
set_led_bit(7, control_register_word, msg_led, 5);
is31_write_data (7, control_register_word, 0x02);
break;
case BLINK_TOGGLE_LED:
set_led_bit(7, control_register_word, msg_led, 6);
is31_write_data (7, control_register_word, 0x02);
2017-05-08 20:57:40 +02:00
break;
2017-05-01 01:27:46 +02:00
2017-04-15 03:20:12 +02:00
case TOGGLE_ALL:
//msg_led = unused
2017-05-08 23:35:08 +02:00
is31_read_register(0, 0x00, &temp);
2017-04-15 03:20:12 +02:00
led_control_reg[0] = 0;
2017-05-01 01:27:46 +02:00
2017-05-08 23:35:08 +02:00
//if first byte is on, then toggle frame 0 off
if (temp==0 || page_status > 0) {
2017-04-15 03:20:12 +02:00
__builtin_memcpy(led_control_reg+1, all_on_leds_mask, 0x12);
} else {
__builtin_memset(led_control_reg+1, 0, 0x12);
}
is31_write_data(0, led_control_reg, 0x13);
if (page_status > 0) {
2017-04-15 03:20:12 +02:00
is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, 0);
2017-05-08 20:57:40 +02:00
page_status=0;
2017-05-08 20:57:40 +02:00
//maintain lock leds
led_set(host_keyboard_leds());
}
2017-04-15 03:20:12 +02:00
break;
2017-04-15 03:20:12 +02:00
case TOGGLE_BACKLIGHT:
//msg_led = on/off
//populate the 9 byte rows to be written to each pin, first byte is register (pin) address
if (msg_led == 1) {
__builtin_memset(pwm_register_array+1, pwm_levels[pwm_step_status], 8);
} else {
__builtin_memset(pwm_register_array+1, 0, 8);
}
for(i=0; i<8; i++) {
//first byte is register address, every 0x10 9 bytes is A-register pwm pins
pwm_register_array[0] = 0x24 + (i * 0x10);
is31_write_data(0,pwm_register_array,9);
}
2017-04-15 03:20:12 +02:00
break;
2017-04-13 08:32:38 +02:00
2017-05-08 23:35:08 +02:00
case DISPLAY_PAGE:
//msg_led = page to toggle on
if (page_status != msg_led) {
2017-04-15 03:20:12 +02:00
is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, msg_led);
2017-05-08 20:57:40 +02:00
page_status = msg_led;
//maintain lock leds
led_set(host_keyboard_leds());
}
break;
case RESET_PAGE:
2017-05-08 20:57:40 +02:00
//led_msg = page to reset
led_control_reg[0] = 0;
__builtin_memset(led_control_reg+1, 0, 0x12);
is31_write_data(msg_led, led_control_reg, 0x13);
2017-04-15 03:20:12 +02:00
break;
case TOGGLE_NUM_LOCK:
2017-05-08 23:35:08 +02:00
//msg_led = 0 or 1, off/on
2017-05-08 20:57:40 +02:00
set_lock_leds(NUM_LOCK_LED_ADDRESS, msg_led, page_status);
2017-04-15 03:20:12 +02:00
break;
case TOGGLE_CAPS_LOCK:
2017-05-08 23:35:08 +02:00
//msg_led = 0 or 1, off/on
2017-05-08 20:57:40 +02:00
set_lock_leds(CAPS_LOCK_LED_ADDRESS, msg_led, page_status);
2017-04-15 03:20:12 +02:00
break;
2017-04-15 03:20:12 +02:00
case STEP_BRIGHTNESS:
2017-05-08 23:35:08 +02:00
//led_msg = step pwm up or down
2017-05-08 20:57:40 +02:00
switch (msg_led) {
case 0:
if (pwm_step_status == 0) {
pwm_step_status = 4;
} else {
pwm_step_status--;
}
break;
case 1:
if (pwm_step_status == 4) {
pwm_step_status = 0;
} else {
pwm_step_status++;
}
break;
}
2017-05-08 20:57:40 +02:00
//populate 8 byte rows to write on each pin
//first byte is register address, every 0x10 9 bytes are A-register pwm pins
__builtin_memset(pwm_register_array+1, pwm_levels[pwm_step_status], 8);
2017-04-15 03:20:12 +02:00
2017-05-08 20:57:40 +02:00
for(i=0; i<8; i++) {
pwm_register_array[0] = 0x24 + (i * 0x10);
is31_write_data(0,pwm_register_array,9);
}
break;
2017-05-01 01:27:46 +02:00
}
2017-04-06 22:45:15 +02:00
}
}
/* ==============================
* led processing functions
* ============================== */
void set_led_bit (uint8_t page, uint8_t *led_control_reg, uint8_t led_addr, uint8_t action) {
2017-05-08 23:35:08 +02:00
//returns 2 bytes: led control register address and byte to write
2017-05-01 01:27:46 +02:00
//0 - bit off, 1 - bit on, 2 - toggle bit
2017-05-08 20:57:40 +02:00
uint8_t control_reg_addr, column_bit, column_byte, bit_temp, blink_on;
//check for valid led address
2017-05-01 01:27:46 +02:00
if (led_addr < 0 || led_addr > 87 || led_addr % 10 > 8) {
return;
}
2017-05-08 23:35:08 +02:00
//check for blink bit
2017-05-01 01:27:46 +02:00
blink_on = action>>2;
action &= ~(1<<2); //strip blink bit
//first byte is led control register address 0x00
//msg_led tens column is pin#, ones column is bit position in 8-bit mask
control_reg_addr = ((led_addr / 10) % 10 - 1 ) * 0x02;// A-register is every other byte
2017-05-01 01:27:46 +02:00
control_reg_addr += blink_on == 1 ? 0x12 : 0x00;//shift 12 bytes to blink register
2017-05-08 23:35:08 +02:00
2017-05-08 20:57:40 +02:00
is31_read_register(page, control_reg_addr, &bit_temp);//maintain status of leds on this byte
column_bit = 1<<(led_addr % 10 - 1);
column_byte = bit_temp;
switch(action) {
case 0:
2017-04-14 02:51:37 +02:00
column_byte &= ~column_bit;
break;
case 1:
2017-04-14 02:51:37 +02:00
column_byte |= column_bit;
break;
case 2:
2017-04-14 02:51:37 +02:00
column_byte ^= column_bit;
break;
}
//return word to be written in register
led_control_reg[0] = control_reg_addr;
led_control_reg[1] = column_byte;
}
2017-05-01 01:27:46 +02:00
void write_led_byte (uint8_t page, uint8_t row, uint8_t led_byte) {
2017-05-08 20:57:40 +02:00
uint8_t led_control_word[2] = {0};//register address and on/off byte
2017-04-13 08:32:38 +02:00
2017-05-01 01:27:46 +02:00
led_control_word[0] = (row - 1 ) * 0x02;// A-register is every other byte
2017-05-08 20:57:40 +02:00
led_control_word[1] = led_byte;
is31_write_data(page, led_control_word, 0x02);
}
void write_led_page (uint8_t page, uint8_t *user_led_array, uint8_t led_count) {
uint8_t i;
2017-05-01 01:27:46 +02:00
uint8_t pin, col;
2017-05-08 23:35:08 +02:00
uint8_t led_control_register[0x13] = {0};
__builtin_memset(led_control_register,0,13);
for(i=0;i<led_count;i++){
2017-05-08 20:57:40 +02:00
// 1 byte shift for led register 0x00 address
pin = ((user_led_array[i] / 10) % 10 - 1 ) * 2 + 1;
2017-04-15 03:20:12 +02:00
col = user_led_array[i] % 10 - 1;
2017-05-01 01:27:46 +02:00
led_control_register[pin] |= 1<<(col);
}
is31_write_data(page, led_control_register, 0x13);
}
2017-05-08 20:57:40 +02:00
void set_lock_leds(uint8_t led_addr, uint8_t led_action, uint8_t page) {
uint8_t lock_temp;
2017-05-01 01:27:46 +02:00
uint8_t led_control_word[2] = {0};
//blink if all leds are on
2017-05-08 20:57:40 +02:00
if (page == 0) {
is31_read_register(0, 0x00, &lock_temp);
if (lock_temp == 0xFF) {
led_action |= (1<<2); //set blink bit
}
2017-05-01 01:27:46 +02:00
}
2017-05-08 20:57:40 +02:00
set_led_bit(page,led_control_word,led_addr,led_action);
is31_write_data(page, led_control_word, 0x02);
2017-05-01 01:27:46 +02:00
}
/* =====================
* hook into user keymap
* ===================== */
void led_controller_init(void) {
2017-04-06 22:45:15 +02:00
uint8_t i;
/* initialise I2C */
/* I2C pins */
palSetPadMode(GPIOB, 0, PAL_MODE_ALTERNATIVE_2); // PTB0/I2C0/SCL
palSetPadMode(GPIOB, 1, PAL_MODE_ALTERNATIVE_2); // PTB1/I2C0/SDA
/* start I2C */
i2cStart(&I2CD1, &i2ccfg);
// try high drive (from kiibohd)
I2CD1.i2c->C2 |= I2Cx_C2_HDRS;
// try glitch fixing (from kiibohd)
I2CD1.i2c->FLT = 4;
chThdSleepMilliseconds(10);
/* initialise IS31 chip */
is31_init();
2017-05-08 20:57:40 +02:00
//set Display Option Register so all pwm intensity is controlled from page 0
2017-05-01 01:27:46 +02:00
//enable blink and set blink period to 0.27s x rate
2017-05-08 20:57:40 +02:00
is31_write_register(IS31_FUNCTIONREG, IS31_REG_DISPLAYOPT, IS31_REG_DISPLAYOPT_INTENSITY_SAME + IS31_REG_DISPLAYOPT_BLINK_ENABLE + 4);
2017-05-08 20:57:40 +02:00
/* set full pwm on page 1 */
2017-04-15 03:20:12 +02:00
pwm_register_array[0] = 0;
__builtin_memset(pwm_register_array+1, 0xFF, 8);
2017-04-06 22:45:15 +02:00
for(i=0; i<8; i++) {
pwm_register_array[0] = 0x24 + (i * 0x10);//first byte of 9 bytes must be register address
is31_write_data(0, pwm_register_array, 9);
chThdSleepMilliseconds(5);
2017-04-06 22:45:15 +02:00
}
/* enable breathing when the displayed page changes */
// Fade-in Fade-out, time = 26ms * 2^N, N=3
is31_write_register(IS31_FUNCTIONREG, IS31_REG_BREATHCTRL1, (3<<4)|3);
is31_write_register(IS31_FUNCTIONREG, IS31_REG_BREATHCTRL2, IS31_REG_BREATHCTRL2_ENABLE|3);
/* more time consuming LED processing should be offloaded into
* a thread, with asynchronous messaging. */
chMBObjectInit(&led_mailbox, led_mailbox_queue, LED_MAILBOX_NUM_MSGS);
chThdCreateStatic(waLEDthread, sizeof(waLEDthread), LOWPRIO, LEDthread, NULL);
}