qmk-keychron-q3-colemak-dh/lib/usbhost/USB_Host_Shield_2.0/examples/testusbhostFAT/testusbhostFAT.ino

737 lines
31 KiB
Arduino
Raw Normal View History

/*
* Mega + USB storage + optional DS1307 + optional expansion RAM + funky status LED,
* Includes interactive debug level setting, and supports hot-plug.
*
* IMPORTANT! PLEASE USE Arduino 1.0.5 or better!
* Older versions HAVE MAJOR BUGS AND WILL NOT WORK AT ALL!
* Use of gcc-avr and lib-c that is newer than the Arduino version is even better.
* If you experience random crashes, use make.
* The options that the IDE use can generate bad code and cause the AVR to crash.
*
* This sketch requires the following libraries:
* https://github.com/felis/USB_Host_Shield_2.0 Install as 'USB_Host_Shield_2_0'
* https://github.com/xxxajk/xmem2 Install as 'xmem', provides memory services.
* https://github.com/xxxajk/generic_storage provides access to FAT file system.
* https://github.com/xxxajk/RTClib provides access to DS1307, or fake clock.
*
* Optional, to use the Makefile (Recommended! See above!):
* https://github.com/xxxajk/Arduino_Makefile_master
*
*/
/////////////////////////////////////////////////////////////
// Please Note: //
// This section is for info with the Arduino IDE ONLY. //
// Unfortunately due to short sightedness of the Arduino //
// code team, that you must set the following in the //
// respective libraries. //
// Changing them here will have _NO_ effect! //
/////////////////////////////////////////////////////////////
// Uncomment to enable debugging
//#define DEBUG_USB_HOST
// This is where stderr/USB debugging goes to
//#define USB_HOST_SERIAL Serial3
// If you have external memory, setting this to 0 enables FAT table caches.
// The 0 setting is recommended only if you have external memory.
//#define _FS_TINY 1
//#define _USE_LFN 3
//#define _MAX_SS 512
/////////////////////////////////////////////////////////////
// End of Arduino IDE specific information //
/////////////////////////////////////////////////////////////
// You can set this to 0 if you are not using a USB hub.
// It will save a little bit of flash and RAM.
// Set to 1 if you want to use a hub.
#define WANT_HUB_TEST 1
// this is for XMEM2
#define EXT_RAM_STACK 1
#define EXT_RAM_HEAP 1
#define LOAD_XMEM
#if defined(CORE_TEENSY) && !defined(_AVR_)
#include <xmem.h>
#include <spi4teensy3.h>
#endif
#if defined(__AVR__)
#include <xmem.h>
#include <SPI.h>
#elif defined(ARDUINO_ARCH_SAM)
#include <SPI.h>
#endif
#if WANT_HUB_TEST
#include <usbhub.h>
#endif
#include <Wire.h>
#define LOAD_RTCLIB
#include <RTClib.h>
#include <masstorage.h>
#include <Storage.h>
#include <PCpartition/PCPartition.h>
#include <avr/interrupt.h>
#include <FAT/FAT.h>
#include <stdio.h>
#if defined(__AVR__)
static FILE tty_stdio;
static FILE tty_stderr;
volatile uint32_t LEDnext_time; // fade timeout
volatile uint32_t HEAPnext_time; // when to print out next heap report
volatile int brightness = 0; // how bright the LED is
volatile int fadeAmount = 80; // how many points to fade the LED by
#endif
USB Usb;
volatile uint8_t current_state = 1;
volatile uint8_t last_state = 0;
volatile bool fatready = false;
volatile bool partsready = false;
volatile bool notified = false;
volatile bool runtest = false;
volatile bool usbon = false;
volatile uint32_t usbon_time;
volatile bool change = false;
volatile bool reportlvl = false;
int cpart = 0;
PCPartition *PT;
#if WANT_HUB_TEST
#define MAX_HUBS 1
USBHub *Hubs[MAX_HUBS];
#endif
static PFAT *Fats[_VOLUMES];
static part_t parts[_VOLUMES];
static storage_t sto[_VOLUMES];
/*make sure this is a power of two. */
#define mbxs 128
static uint8_t My_Buff_x[mbxs]; /* File read buffer */
#if defined(__AVR__)
#define prescale1 ((1 << WGM12) | (1 << CS10))
#define prescale8 ((1 << WGM12) | (1 << CS11))
#define prescale64 ((1 << WGM12) | (1 << CS10) | (1 << CS11))
#define prescale256 ((1 << WGM12) | (1 << CS12))
#define prescale1024 ((1 << WGM12) | (1 << CS12) | (1 << CS10))
extern "C" {
extern unsigned int freeHeap();
}
static int tty_stderr_putc(char c, FILE *t) {
USB_HOST_SERIAL.write(c);
return 0;
}
static int __attribute__((unused)) tty_stderr_flush(FILE *t) {
USB_HOST_SERIAL.flush();
return 0;
}
static int tty_std_putc(char c, FILE *t) {
Serial.write(c);
return 0;
}
static int tty_std_getc(FILE *t) {
while(!Serial.available());
return Serial.read();
}
static int __attribute__((unused)) tty_std_flush(FILE *t) {
Serial.flush();
return 0;
}
#else
// Supposedly the DUE has stdio already pointing to serial...
#if !defined(ARDUINO_ARCH_SAM)
// But newlib needs this...
extern "C" {
int _write(int fd, const char *ptr, int len) {
int j;
for(j = 0; j < len; j++) {
if(fd == 1)
Serial.write(*ptr++);
else if(fd == 2)
USB_HOST_SERIAL.write(*ptr++);
}
return len;
}
int _read(int fd, char *ptr, int len) {
if(len > 0 && fd == 0) {
while(!Serial.available());
*ptr = Serial.read();
return 1;
}
return 0;
}
#include <sys/stat.h>
int _fstat(int fd, struct stat *st) {
memset(st, 0, sizeof (*st));
st->st_mode = S_IFCHR;
st->st_blksize = 1024;
return 0;
}
int _isatty(int fd) {
return (fd < 3) ? 1 : 0;
}
}
#endif // !defined(ARDUINO_ARCH_SAM)
#endif
void setup() {
bool serr = false;
for(int i = 0; i < _VOLUMES; i++) {
Fats[i] = NULL;
sto[i].private_data = new pvt_t;
((pvt_t *)sto[i].private_data)->B = 255; // impossible
}
// Set this to higher values to enable more debug information
// minimum 0x00, maximum 0xff
UsbDEBUGlvl = 0x81;
#if !defined(CORE_TEENSY) && defined(__AVR__)
// make LED pin as an output:
pinMode(LED_BUILTIN, OUTPUT);
pinMode(2, OUTPUT);
// Ensure TX is off
_SFR_BYTE(UCSR0B) &= ~_BV(TXEN0);
// Initialize 'debug' serial port
USB_HOST_SERIAL.begin(115200);
// Do not start primary Serial port if already started.
if(bit_is_clear(UCSR0B, TXEN0)) {
Serial.begin(115200);
serr = true;
}
// Blink LED
delay(500);
analogWrite(LED_BUILTIN, 255);
delay(500);
analogWrite(LED_BUILTIN, 0);
delay(500);
#else
while(!Serial);
Serial.begin(115200); // On the Teensy 3.x we get a delay at least!
#endif
#if defined(__AVR__)
// Set up stdio/stderr
tty_stdio.put = tty_std_putc;
tty_stdio.get = tty_std_getc;
tty_stdio.flags = _FDEV_SETUP_RW;
tty_stdio.udata = 0;
tty_stderr.put = tty_stderr_putc;
tty_stderr.get = NULL;
tty_stderr.flags = _FDEV_SETUP_WRITE;
tty_stderr.udata = 0;
stdout = &tty_stdio;
stdin = &tty_stdio;
stderr = &tty_stderr;
#endif
printf_P(PSTR("\r\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nStart\r\n"));
printf_P(PSTR("Current UsbDEBUGlvl %02x\r\n"), UsbDEBUGlvl);
printf_P(PSTR("'+' and '-' increase/decrease by 0x01\r\n"));
printf_P(PSTR("'.' and ',' increase/decrease by 0x10\r\n"));
printf_P(PSTR("'t' will run a 10MB write/read test and print out the time it took.\r\n"));
printf_P(PSTR("'e' will toggle vbus off for a few moments.\r\n\r\n"));
printf_P(PSTR("Long filename support: "
#if _USE_LFN
"Enabled"
#else
"Disabled"
#endif
"\r\n"));
if(serr) {
fprintf_P(stderr, PSTR("\r\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nStart\r\n"));
fprintf_P(stderr, PSTR("Current UsbDEBUGlvl %02x\r\n"), UsbDEBUGlvl);
fprintf_P(stderr, PSTR("Long filename support: "
#if _USE_LFN
"Enabled"
#else
"Disabled"
#endif
"\r\n"));
}
#if !defined(CORE_TEENSY) && defined(__AVR__)
analogWrite(LED_BUILTIN, 255);
delay(500);
analogWrite(LED_BUILTIN, 0);
delay(500);
analogWrite(LED_BUILTIN, 255);
delay(500);
analogWrite(LED_BUILTIN, 0);
delay(500);
analogWrite(LED_BUILTIN, 255);
delay(500);
analogWrite(LED_BUILTIN, 0);
delay(500);
LEDnext_time = millis() + 1;
#if EXT_RAM
printf_P(PSTR("Total EXT RAM banks %i\r\n"), xmem::getTotalBanks());
#endif
printf_P(PSTR("Available heap: %u Bytes\r\n"), freeHeap());
printf_P(PSTR("SP %x\r\n"), (uint8_t *)(SP));
#endif
// Even though I'm not going to actually be deleting,
// I want to be able to have slightly more control.
// Besides, it is easier to initialize stuff...
#if WANT_HUB_TEST
for(int i = 0; i < MAX_HUBS; i++) {
Hubs[i] = new USBHub(&Usb);
#if defined(__AVR__)
printf_P(PSTR("Available heap: %u Bytes\r\n"), freeHeap());
#endif
}
#endif
// Initialize generic storage. This must be done before USB starts.
Init_Generic_Storage();
while(Usb.Init(1000) == -1) {
printf_P(PSTR("No USB HOST Shield?\r\n"));
Notify(PSTR("OSC did not start."), 0x40);
}
#if !defined(CORE_TEENSY) && defined(__AVR__)
cli();
TCCR3A = 0;
TCCR3B = 0;
// (0.01/(1/((16 *(10^6)) / 8))) - 1 = 19999
OCR3A = 19999;
TCCR3B |= prescale8;
TIMSK3 |= (1 << OCIE1A);
sei();
HEAPnext_time = millis() + 10000;
#endif
#if defined(__AVR__)
HEAPnext_time = millis() + 10000;
#endif
}
void serialEvent() {
// Adjust UsbDEBUGlvl level on-the-fly.
// + to increase, - to decrease, * to display current level.
// . to increase by 16, , to decrease by 16
// e to flick VBUS
// * to report debug level
if(Serial.available()) {
int inByte = Serial.read();
switch(inByte) {
case '+':
if(UsbDEBUGlvl < 0xff) UsbDEBUGlvl++;
reportlvl = true;
break;
case '-':
if(UsbDEBUGlvl > 0x00) UsbDEBUGlvl--;
reportlvl = true;
break;
case '.':
if(UsbDEBUGlvl < 0xf0) UsbDEBUGlvl += 16;
reportlvl = true;
break;
case ',':
if(UsbDEBUGlvl > 0x0f) UsbDEBUGlvl -= 16;
reportlvl = true;
break;
case '*':
reportlvl = true;
break;
case 't':
runtest = true;
break;
case 'e':
change = true;
usbon = false;
break;
}
}
}
#if !defined(CORE_TEENSY) && defined(__AVR__)
// ALL teensy versions LACK PWM ON LED
ISR(TIMER3_COMPA_vect) {
if((long)(millis() - LEDnext_time) >= 0L) {
LEDnext_time = millis() + 30;
// set the brightness of LED
analogWrite(LED_BUILTIN, brightness);
// change the brightness for next time through the loop:
brightness = brightness + fadeAmount;
// reverse the direction of the fading at the ends of the fade:
if(brightness <= 0) {
brightness = 0;
fadeAmount = -fadeAmount;
}
if(brightness >= 255) {
brightness = 255;
fadeAmount = -fadeAmount;
}
}
}
#endif
bool isfat(uint8_t t) {
return (t == 0x01 || t == 0x04 || t == 0x06 || t == 0x0b || t == 0x0c || t == 0x0e || t == 0x1);
}
void die(FRESULT rc) {
printf_P(PSTR("Failed with rc=%u.\r\n"), rc);
//for (;;);
}
void loop() {
FIL My_File_Object_x; /* File object */
#if defined(__AVR__)
// Print a heap status report about every 10 seconds.
if((long)(millis() - HEAPnext_time) >= 0L) {
if(UsbDEBUGlvl > 0x50) {
printf_P(PSTR("Available heap: %u Bytes\r\n"), freeHeap());
}
HEAPnext_time = millis() + 10000;
}
TCCR3B = 0;
#endif
#if defined(CORE_TEENSY)
// Teensy suffers here, oh well...
serialEvent();
#endif
// Horrid! This sort of thing really belongs in an ISR, not here!
// We also will be needing to test each hub port, we don't do this yet!
if(!change && !usbon && (long)(millis() - usbon_time) >= 0L) {
change = true;
usbon = true;
}
if(change) {
change = false;
if(usbon) {
Usb.vbusPower(vbus_on);
printf_P(PSTR("VBUS on\r\n"));
} else {
Usb.vbusPower(vbus_off);
usbon_time = millis() + 2000;
}
}
Usb.Task();
current_state = Usb.getUsbTaskState();
if(current_state != last_state) {
if(UsbDEBUGlvl > 0x50)
printf_P(PSTR("USB state = %x\r\n"), current_state);
#if !defined(CORE_TEENSY) && defined(__AVR__)
if(current_state == USB_STATE_RUNNING) {
fadeAmount = 30;
}
#endif
if(current_state == USB_DETACHED_SUBSTATE_WAIT_FOR_DEVICE) {
#if !defined(CORE_TEENSY) && defined(__AVR__)
fadeAmount = 80;
#endif
partsready = false;
for(int i = 0; i < cpart; i++) {
if(Fats[i] != NULL)
delete Fats[i];
Fats[i] = NULL;
}
fatready = false;
notified = false;
cpart = 0;
}
last_state = current_state;
}
// only do any of this if usb is on
if(usbon) {
if(partsready && !fatready) {
if(cpart > 0) fatready = true;
}
// This is horrible, and needs to be moved elsewhere!
for(int B = 0; B < MAX_USB_MS_DRIVERS; B++) {
if((!partsready) && (UHS_USB_BulkOnly[B]->GetAddress())) {
// Build a list.
int ML = UHS_USB_BulkOnly[B]->GetbMaxLUN();
//printf("MAXLUN = %i\r\n", ML);
ML++;
for(int i = 0; i < ML; i++) {
if(UHS_USB_BulkOnly[B]->LUNIsGood(i)) {
partsready = true;
((pvt_t *)(sto[i].private_data))->lun = i;
((pvt_t *)(sto[i].private_data))->B = B;
sto[i].Reads = *UHS_USB_BulkOnly_Read;
sto[i].Writes = *UHS_USB_BulkOnly_Write;
sto[i].Status = *UHS_USB_BulkOnly_Status;
sto[i].Initialize = *UHS_USB_BulkOnly_Initialize;
sto[i].Commit = *UHS_USB_BulkOnly_Commit;
sto[i].TotalSectors = UHS_USB_BulkOnly[B]->GetCapacity(i);
sto[i].SectorSize = UHS_USB_BulkOnly[B]->GetSectorSize(i);
printf_P(PSTR("LUN:\t\t%u\r\n"), i);
printf_P(PSTR("Total Sectors:\t%08lx\t%lu\r\n"), sto[i].TotalSectors, sto[i].TotalSectors);
printf_P(PSTR("Sector Size:\t%04x\t\t%u\r\n"), sto[i].SectorSize, sto[i].SectorSize);
// get the partition data...
PT = new PCPartition;
if(!PT->Init(&sto[i])) {
part_t *apart;
for(int j = 0; j < 4; j++) {
apart = PT->GetPart(j);
if(apart != NULL && apart->type != 0x00) {
memcpy(&(parts[cpart]), apart, sizeof (part_t));
printf_P(PSTR("Partition %u type %#02x\r\n"), j, parts[cpart].type);
// for now
if(isfat(parts[cpart].type)) {
Fats[cpart] = new PFAT(&sto[i], cpart, parts[cpart].firstSector);
//int r = Fats[cpart]->Good();
if(Fats[cpart]->MountStatus()) {
delete Fats[cpart];
Fats[cpart] = NULL;
} else cpart++;
}
}
}
} else {
// try superblock
Fats[cpart] = new PFAT(&sto[i], cpart, 0);
//int r = Fats[cpart]->Good();
if(Fats[cpart]->MountStatus()) {
//printf_P(PSTR("Superblock error %x\r\n"), r);
delete Fats[cpart];
Fats[cpart] = NULL;
} else cpart++;
}
delete PT;
} else {
sto[i].Writes = NULL;
sto[i].Reads = NULL;
sto[i].Initialize = NULL;
sto[i].TotalSectors = 0UL;
sto[i].SectorSize = 0;
}
}
}
}
if(fatready) {
if(Fats[0] != NULL) {
struct Pvt * p;
p = ((struct Pvt *)(Fats[0]->storage->private_data));
if(!UHS_USB_BulkOnly[p->B]->LUNIsGood(p->lun)) {
// media change
#if !defined(CORE_TEENSY) && defined(__AVR__)
fadeAmount = 80;
#endif
partsready = false;
for(int i = 0; i < cpart; i++) {
if(Fats[i] != NULL)
delete Fats[i];
Fats[cpart] = NULL;
}
fatready = false;
notified = false;
cpart = 0;
}
}
}
if(fatready) {
FRESULT rc; /* Result code */
UINT bw, br, i;
if(!notified) {
#if !defined(CORE_TEENSY) && defined(__AVR__)
fadeAmount = 5;
#endif
notified = true;
FATFS *fs = NULL;
for(int zz = 0; zz < _VOLUMES; zz++) {
if(Fats[zz]->volmap == 0) fs = Fats[zz]->ffs;
}
printf_P(PSTR("\r\nOpen an existing file (message.txt).\r\n"));
rc = f_open(&My_File_Object_x, "0:/MESSAGE.TXT", FA_READ);
if(rc) printf_P(PSTR("Error %i, message.txt not found.\r\n"), rc);
else {
printf_P(PSTR("\r\nType the file content.\r\n"));
for(;;) {
rc = f_read(&My_File_Object_x, My_Buff_x, mbxs, &br); /* Read a chunk of file */
if(rc || !br) break; /* Error or end of file */
for(i = 0; i < br; i++) {
/* Type the data */
if(My_Buff_x[i] == '\n')
Serial.write('\r');
if(My_Buff_x[i] != '\r')
Serial.write(My_Buff_x[i]);
Serial.flush();
}
}
if(rc) {
f_close(&My_File_Object_x);
goto out;
}
printf_P(PSTR("\r\nClose the file.\r\n"));
rc = f_close(&My_File_Object_x);
if(rc) goto out;
}
printf_P(PSTR("\r\nCreate a new file (hello.txt).\r\n"));
rc = f_open(&My_File_Object_x, "0:/Hello.TxT", FA_WRITE | FA_CREATE_ALWAYS);
if(rc) {
die(rc);
goto outdir;
}
printf_P(PSTR("\r\nWrite a text data. (Hello world!)\r\n"));
rc = f_write(&My_File_Object_x, "Hello world!\r\n", 14, &bw);
if(rc) {
goto out;
}
printf_P(PSTR("%u bytes written.\r\n"), bw);
printf_P(PSTR("\r\nClose the file.\r\n"));
rc = f_close(&My_File_Object_x);
if(rc) {
die(rc);
goto out;
}
outdir:{
#if _USE_LFN
char lfn[_MAX_LFN + 1];
FILINFO My_File_Info_Object_x; /* File information object */
My_File_Info_Object_x.lfname = lfn;
#endif
DIR My_Dir_Object_x; /* Directory object */
printf_P(PSTR("\r\nOpen root directory.\r\n"));
rc = f_opendir(&My_Dir_Object_x, "0:/");
if(rc) {
die(rc);
goto out;
}
printf_P(PSTR("\r\nDirectory listing...\r\n"));
#if defined(__AVR__)
printf_P(PSTR("Available heap: %u Bytes\r\n"), freeHeap());
#endif
for(;;) {
#if _USE_LFN
My_File_Info_Object_x.lfsize = _MAX_LFN;
#endif
rc = f_readdir(&My_Dir_Object_x, &My_File_Info_Object_x); /* Read a directory item */
if(rc || !My_File_Info_Object_x.fname[0]) break; /* Error or end of dir */
if(My_File_Info_Object_x.fattrib & AM_DIR) {
Serial.write('d');
} else {
Serial.write('-');
}
Serial.write('r');
if(My_File_Info_Object_x.fattrib & AM_RDO) {
Serial.write('-');
} else {
Serial.write('w');
}
if(My_File_Info_Object_x.fattrib & AM_HID) {
Serial.write('h');
} else {
Serial.write('-');
}
if(My_File_Info_Object_x.fattrib & AM_SYS) {
Serial.write('s');
} else {
Serial.write('-');
}
if(My_File_Info_Object_x.fattrib & AM_ARC) {
Serial.write('a');
} else {
Serial.write('-');
}
#if _USE_LFN
if(*My_File_Info_Object_x.lfname)
printf_P(PSTR(" %8lu %s (%s)\r\n"), My_File_Info_Object_x.fsize, My_File_Info_Object_x.fname, My_File_Info_Object_x.lfname);
else
#endif
printf_P(PSTR(" %8lu %s\r\n"), My_File_Info_Object_x.fsize, &(My_File_Info_Object_x.fname[0]));
}
}
out:
if(rc) die(rc);
DISK_IOCTL(fs->drv, CTRL_COMMIT, 0);
printf_P(PSTR("\r\nTest completed.\r\n"));
}
if(runtest) {
ULONG ii, wt, rt, start, end;
FATFS *fs = NULL;
for(int zz = 0; zz < _VOLUMES; zz++) {
if(Fats[zz]->volmap == 0) fs = Fats[zz]->ffs;
}
runtest = false;
f_unlink("0:/10MB.bin");
printf_P(PSTR("\r\nCreate a new 10MB test file (10MB.bin).\r\n"));
rc = f_open(&My_File_Object_x, "0:/10MB.bin", FA_WRITE | FA_CREATE_ALWAYS);
if(rc) goto failed;
for(bw = 0; bw < mbxs; bw++) My_Buff_x[bw] = bw & 0xff;
fflush(stdout);
start = millis();
while(start == millis());
for(ii = 10485760LU / mbxs; ii > 0LU; ii--) {
rc = f_write(&My_File_Object_x, My_Buff_x, mbxs, &bw);
if(rc || !bw) goto failed;
}
rc = f_close(&My_File_Object_x);
if(rc) goto failed;
end = millis();
wt = (end - start) - 1;
printf_P(PSTR("Time to write 10485760 bytes: %lu ms (%lu sec) \r\n"), wt, (500 + wt) / 1000UL);
rc = f_open(&My_File_Object_x, "0:/10MB.bin", FA_READ);
fflush(stdout);
start = millis();
while(start == millis());
if(rc) goto failed;
for(;;) {
rc = f_read(&My_File_Object_x, My_Buff_x, mbxs, &bw); /* Read a chunk of file */
if(rc || !bw) break; /* Error or end of file */
}
end = millis();
if(rc) goto failed;
rc = f_close(&My_File_Object_x);
if(rc) goto failed;
rt = (end - start) - 1;
printf_P(PSTR("Time to read 10485760 bytes: %lu ms (%lu sec)\r\nDelete test file\r\n"), rt, (500 + rt) / 1000UL);
failed:
if(rc) die(rc);
DISK_IOCTL(fs->drv, CTRL_COMMIT, 0);
printf_P(PSTR("10MB timing test finished.\r\n"));
}
}
}
}