qmk-keychron-q3-colemak-dh/keyboards/crkbd/rev1/common/ssd1306.c

361 lines
7.4 KiB
C
Raw Normal View History

#ifdef SSD1306OLED
#include "ssd1306.h"
#include "i2c_master.h"
#include <string.h>
#include "print.h"
#ifdef ADAFRUIT_BLE_ENABLE
#include "adafruit_ble.h"
#endif
#ifdef PROTOCOL_LUFA
#include "lufa.h"
#endif
#include "sendchar.h"
#include "timer.h"
struct CharacterMatrix display;
extern const unsigned char font[] PROGMEM;
#ifndef OLED_BLANK_CHAR
#define OLED_BLANK_CHAR ' '
#endif
#ifndef OLED_BITS_FILTER
#define OLED_BITS_FILTER
#endif
// Set this to 1 to help diagnose early startup problems
// when testing power-on with ble. Turn it off otherwise,
// as the latency of printing most of the debug info messes
// with the matrix scan, causing keys to drop.
#define DEBUG_TO_SCREEN 0
//static uint16_t last_battery_update;
//static uint32_t vbat;
//#define BatteryUpdateInterval 10000 /* milliseconds */
// 'last_flush' is declared as uint16_t,
// so this must be less than 65535
#ifndef ScreenOffInterval
#define ScreenOffInterval 60000 /* milliseconds */
#endif
#if DEBUG_TO_SCREEN
static uint8_t displaying;
#endif
static uint16_t last_flush;
static bool force_dirty = true;
// Write command sequence.
// Returns true on success.
static inline bool _send_cmd1(uint8_t cmd) {
bool res = false;
if (i2c_start(SSD1306_ADDRESS, 100)) {
xprintf("failed to start write to %d\n", SSD1306_ADDRESS);
goto done;
}
if (i2c_write(0x0 /* command byte follows */, 100)) {
print("failed to write control byte\n");
goto done;
}
if (i2c_write(cmd, 100)) {
xprintf("failed to write command %d\n", cmd);
goto done;
}
res = true;
done:
i2c_stop();
return res;
}
#define send_cmd1(c) if (!_send_cmd1(c)) {goto done;}
#define send_cmds(c) if (!_send_cmds(c,sizeof(c))) {goto done;}
#define cmd1(X) X
#define cmd2(X,Y) X,Y
#define cmd3(X,Y,Z) X,Y,Z
static bool _send_cmds(const uint8_t* p,uint8_t sz) {
for(uint8_t i=sz;i;i--) {
send_cmd1( pgm_read_byte(p++) );
}
return true;
done:
return false;
}
#define SEND_CMDS(...) {static const uint8_t _cmds[] PROGMEM = { __VA_ARGS__,0 };send_cmds(_cmds);}
static void clear_display(void) {
matrix_clear(&display);
// Clear all of the display bits (there can be random noise
// in the RAM on startup)
SEND_CMDS(
cmd3(PageAddr, 0, (DisplayHeight / 8) - 1),
cmd3(ColumnAddr, 0, DisplayWidth - 1)
);
if (i2c_start(SSD1306_ADDRESS, 100)) {
goto done;
}
if (i2c_write(0x40, 100)) {
// Data mode
goto done;
}
for (uint8_t row = MatrixRows;row; row--) {
for (uint8_t col = DisplayWidth; col; col--) {
i2c_write(0, 100);
}
}
display.dirty = false;
done:
i2c_stop();
}
#if DEBUG_TO_SCREEN
#undef sendchar
static int8_t capture_sendchar(uint8_t c) {
sendchar(c);
iota_gfx_write_char(c);
if (!displaying) {
iota_gfx_flush();
}
return 0;
}
#endif
bool iota_gfx_init(bool rotate) {
bool success = false;
i2c_init();
SEND_CMDS(
cmd1(DisplayOff),
cmd2(SetDisplayClockDiv, 0x80),
cmd2(SetMultiPlex, DisplayHeight - 1),
cmd2(SetDisplayOffset, 0),
cmd1(SetStartLine | 0x0),
cmd2(SetChargePump, 0x14 /* Enable */),
cmd2(SetMemoryMode, 0 /* horizontal addressing */)
);
if(rotate){
// the following Flip the display orientation 180 degrees
SEND_CMDS(
cmd1(SegRemap),
cmd1(ComScanInc)
);
}else{
// Flips the display orientation 0 degrees
SEND_CMDS(
cmd1(SegRemap | 0x1),
cmd1(ComScanDec)
);
}
SEND_CMDS(
#ifdef SSD1306_128X64
cmd2(SetComPins, 0x12),
#else
cmd2(SetComPins, 0x2),
#endif
cmd2(SetContrast, 0x8f),
cmd2(SetPreCharge, 0xf1),
cmd2(SetVComDetect, 0x40),
cmd1(DisplayAllOnResume),
cmd1(NormalDisplay),
cmd1(DeActivateScroll),
cmd1(DisplayOn),
cmd2(SetContrast, 0) // Dim
);
clear_display();
success = true;
iota_gfx_flush();
#if DEBUG_TO_SCREEN
print_set_sendchar(capture_sendchar);
#endif
done:
return success;
}
bool iota_gfx_off(void) {
bool success = false;
send_cmd1(DisplayOff);
success = true;
done:
return success;
}
bool iota_gfx_on(void) {
bool success = false;
send_cmd1(DisplayOn);
success = true;
done:
return success;
}
void matrix_write_char_inner(struct CharacterMatrix *matrix, uint8_t c) {
*matrix->cursor = c;
++matrix->cursor;
if (matrix->cursor - &matrix->display[0][0] == sizeof(matrix->display)) {
// We went off the end; scroll the display upwards by one line
memmove(&matrix->display[0], &matrix->display[1],
MatrixCols * (MatrixRows - 1));
matrix->cursor = &matrix->display[MatrixRows - 1][0];
memset(matrix->cursor, OLED_BLANK_CHAR, MatrixCols);
}
}
void matrix_write_char(struct CharacterMatrix *matrix, uint8_t c) {
matrix->dirty = true;
if (c == '\n') {
// Clear to end of line from the cursor and then move to the
// start of the next line
uint8_t cursor_col = (matrix->cursor - &matrix->display[0][0]) % MatrixCols;
while (cursor_col++ < MatrixCols) {
matrix_write_char_inner(matrix, OLED_BLANK_CHAR);
}
return;
}
matrix_write_char_inner(matrix, c);
}
void iota_gfx_write_char(uint8_t c) {
matrix_write_char(&display, c);
}
void matrix_write(struct CharacterMatrix *matrix, const char *data) {
while (*data) {
matrix_write_char(matrix, *data);
++data;
}
}
void matrix_write_ln(struct CharacterMatrix *matrix, const char *data) {
matrix_write(matrix, data);
matrix_write(matrix, "\n");
}
void iota_gfx_write(const char *data) {
matrix_write(&display, data);
}
void matrix_write_P(struct CharacterMatrix *matrix, const char *data) {
while (true) {
uint8_t c = pgm_read_byte(data);
if (c == 0) {
return;
}
matrix_write_char(matrix, c);
++data;
}
}
void iota_gfx_write_P(const char *data) {
matrix_write_P(&display, data);
}
void matrix_clear(struct CharacterMatrix *matrix) {
memset(matrix->display, OLED_BLANK_CHAR, sizeof(matrix->display));
matrix->cursor = &matrix->display[0][0];
matrix->dirty = true;
}
void iota_gfx_clear_screen(void) {
matrix_clear(&display);
}
void matrix_render(struct CharacterMatrix *matrix) {
last_flush = timer_read();
iota_gfx_on();
#if DEBUG_TO_SCREEN
++displaying;
#endif
// Move to the home position
SEND_CMDS(
cmd3(PageAddr, 0, MatrixRows - 1),
cmd3(ColumnAddr, 0, (MatrixCols * FontWidth) - 1)
);
if (i2c_write(SSD1306_ADDRESS, 100)) {
goto done;
}
if (i2c_write(0x40, 100)) {
// Data mode
goto done;
}
for (uint8_t row = 0; row < MatrixRows; ++row) {
for (uint8_t col = 0; col < MatrixCols; ++col) {
const uint8_t *glyph = font + (matrix->display[row][col] * FontWidth);
for (uint8_t glyphCol = 0; glyphCol < FontWidth; ++glyphCol) {
uint8_t colBits = pgm_read_byte(glyph + glyphCol);
i2c_write(colBits OLED_BITS_FILTER, 100);
}
// 1 column of space between chars (it's not included in the glyph)
//i2c_master_write(0);
}
}
matrix->dirty = false;
done:
i2c_stop();
#if DEBUG_TO_SCREEN
--displaying;
#endif
}
void iota_gfx_flush(void) {
matrix_render(&display);
}
__attribute__ ((weak))
void iota_gfx_task_user(void) {
}
void iota_gfx_task(void) {
iota_gfx_task_user();
if (display.dirty|| force_dirty) {
iota_gfx_flush();
force_dirty = false;
}
if (ScreenOffInterval !=0 && timer_elapsed(last_flush) > ScreenOffInterval) {
iota_gfx_off();
}
}
bool process_record_gfx(uint16_t keycode, keyrecord_t *record) {
force_dirty = true;
return true;
}
#endif