Merge remote-tracking branch 'qmk/master' into merge-2022-09-10

This commit is contained in:
Ilya Zhuravlev
2022-09-10 04:10:44 -06:00
9866 changed files with 143396 additions and 44465 deletions

View File

@ -124,7 +124,12 @@ bool get_autoshift_shift_state(uint16_t keycode) {
/** \brief Restores the shift key if it was cancelled by Auto Shift */
static void autoshift_flush_shift(void) {
autoshift_flags.holding_shift = false;
del_weak_mods(MOD_BIT(KC_LSFT));
# ifdef CAPS_WORD_ENABLE
if (!is_caps_word_on())
# endif // CAPS_WORD_ENABLE
{
del_weak_mods(MOD_BIT(KC_LSFT));
}
if (autoshift_flags.cancelling_lshift) {
autoshift_flags.cancelling_lshift = false;
add_mods(MOD_BIT(KC_LSFT));
@ -326,11 +331,13 @@ void autoshift_disable(void) {
# ifndef AUTO_SHIFT_NO_SETUP
void autoshift_timer_report(void) {
# ifdef SEND_STRING_ENABLE
char display[8];
snprintf(display, 8, "\n%d\n", autoshift_timeout);
send_string((const char *)display);
# endif
}
# endif

View File

@ -32,7 +32,7 @@
#define AUTO_SHIFT_SPECIAL \
KC_TAB: \
case KC_MINUS ... KC_SLASH: \
case KC_NONUS_BSLASH
case KC_NONUS_BACKSLASH
// clang-format on
bool process_auto_shift(uint16_t keycode, keyrecord_t *record);

View File

@ -101,14 +101,34 @@ bool process_caps_word(uint16_t keycode, keyrecord_t* record) {
return true;
#ifndef NO_ACTION_TAPPING
// Corresponding to mod keys above, a held mod-tap is handled as:
// * For shift mods, pass KC_LSFT or KC_RSFT to
// caps_word_press_user() to determine whether to continue.
// * For Shift + AltGr (MOD_RSFT | MOD_RALT), pass RSFT(KC_RALT).
// * AltGr (MOD_RALT) is ignored.
// * Otherwise stop Caps Word.
case QK_MOD_TAP ... QK_MOD_TAP_MAX:
if (record->tap.count == 0) {
// Deactivate if a mod becomes active through holding
// a mod-tap key.
caps_word_off();
return true;
if (record->tap.count == 0) { // Mod-tap key is held.
const uint8_t mods = (keycode >> 8) & 0x1f;
switch (mods) {
case MOD_LSFT:
keycode = KC_LSFT;
break;
case MOD_RSFT:
keycode = KC_RSFT;
break;
case MOD_RSFT | MOD_RALT:
keycode = RSFT(KC_RALT);
break;
case MOD_RALT:
return true;
default:
caps_word_off();
return true;
}
} else {
keycode &= 0xff;
}
keycode &= 0xff;
break;
# ifndef NO_ACTION_LAYER
@ -131,7 +151,11 @@ bool process_caps_word(uint16_t keycode, keyrecord_t* record) {
#endif // SWAP_HANDS_ENABLE
}
#ifdef AUTO_SHIFT_ENABLE
del_weak_mods(get_autoshift_state() ? ~MOD_BIT(KC_LSFT) : 0xff);
#else
clear_weak_mods();
#endif // AUTO_SHIFT_ENABLE
if (caps_word_press_user(keycode)) {
send_keyboard_report();
return true;

View File

@ -234,7 +234,16 @@ static inline void dump_key_buffer(void) {
#endif
}
record->event.time = 0;
#if defined(CAPS_WORD_ENABLE) && defined(AUTO_SHIFT_ENABLE)
// Edge case: preserve the weak Left Shift mod if both Caps Word and
// Auto Shift are on. Caps Word capitalizes by setting the weak Left
// Shift mod during the press event, but Auto Shift doesn't send the
// key until it receives the release event.
del_weak_mods((is_caps_word_on() && get_autoshift_state()) ? ~MOD_BIT(KC_LSFT) : 0xff);
#else
clear_weak_mods();
#endif // defined(CAPS_WORD_ENABLE) && defined(AUTO_SHIFT_ENABLE)
#if TAP_CODE_DELAY > 0
// only delay once and for a non-tapping key

View File

@ -86,6 +86,9 @@ void dynamic_macro_play(keyrecord_t *macro_buffer, keyrecord_t *macro_end, int8_
while (macro_buffer != macro_end) {
process_record(macro_buffer);
macro_buffer += direction;
#ifdef DYNAMIC_MACRO_DELAY
wait_ms(DYNAMIC_MACRO_DELAY);
#endif
}
clear_keyboard();

View File

@ -22,12 +22,14 @@
#endif
static void tapping_term_report(void) {
#ifdef SEND_STRING_ENABLE
const char *tapping_term_str = get_u16_str(g_tapping_term, ' ');
// Skip padding spaces
while (*tapping_term_str == ' ') {
tapping_term_str++;
}
send_string(tapping_term_str);
#endif
}
bool process_dynamic_tapping_term(uint16_t keycode, keyrecord_t *record) {

View File

@ -106,7 +106,7 @@ bool process_joystick_analogread_quantum() {
wait_us(10);
# if defined(__AVR__) || defined(PROTOCOL_CHIBIOS)
# if defined(ANALOG_JOYSTICK_ENABLE) && (defined(__AVR__) || defined(PROTOCOL_CHIBIOS))
int16_t axis_val = analogReadPin(joystick_axes[axis_index].input_pin);
# else
// default to resting position

View File

@ -64,6 +64,7 @@ bool process_leader(uint16_t keycode, keyrecord_t *record) {
} else {
leading = false;
leader_end();
return true;
}
# ifdef LEADER_PER_KEY_TIMING
leader_time = timer_read();

View File

@ -45,12 +45,16 @@ bool process_magic(uint16_t keycode, keyrecord_t *record) {
case MAGIC_SWAP_LCTL_LGUI ... MAGIC_EE_HANDS_RIGHT:
case MAGIC_TOGGLE_GUI:
case MAGIC_TOGGLE_CONTROL_CAPSLOCK:
case MAGIC_SWAP_ESCAPE_CAPSLOCK ... MAGIC_TOGGLE_ESCAPE_CAPSLOCK:
/* keymap config */
keymap_config.raw = eeconfig_read_keymap();
switch (keycode) {
case MAGIC_SWAP_CONTROL_CAPSLOCK:
keymap_config.swap_control_capslock = true;
break;
case MAGIC_SWAP_ESCAPE_CAPSLOCK:
keymap_config.swap_escape_capslock = true;
break;
case MAGIC_CAPSLOCK_TO_CONTROL:
keymap_config.capslock_to_control = true;
break;
@ -94,6 +98,9 @@ bool process_magic(uint16_t keycode, keyrecord_t *record) {
case MAGIC_UNSWAP_CONTROL_CAPSLOCK:
keymap_config.swap_control_capslock = false;
break;
case MAGIC_UNSWAP_ESCAPE_CAPSLOCK:
keymap_config.swap_escape_capslock = false;
break;
case MAGIC_UNCAPSLOCK_TO_CONTROL:
keymap_config.capslock_to_control = false;
break;
@ -172,6 +179,9 @@ bool process_magic(uint16_t keycode, keyrecord_t *record) {
case MAGIC_TOGGLE_CONTROL_CAPSLOCK:
keymap_config.swap_control_capslock = !keymap_config.swap_control_capslock;
break;
case MAGIC_TOGGLE_ESCAPE_CAPSLOCK:
keymap_config.swap_escape_capslock = !keymap_config.swap_escape_capslock;
break;
}
eeconfig_update_keymap(keymap_config.raw);

View File

@ -1,4 +1,4 @@
/* Copyright 2017 Joseph Wasson
/* Copyright 2017, 2022 Joseph Wasson, Vladislav Kucheriavykh
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -15,77 +15,118 @@
*/
#include "process_steno.h"
#include "quantum_keycodes.h"
#include "eeprom.h"
#include "keymap_steno.h"
#include "virtser.h"
#include <string.h>
#ifdef VIRTSER_ENABLE
# include "virtser.h"
#endif
#ifdef STENO_ENABLE_ALL
# include "eeprom.h"
#endif
// TxBolt Codes
#define TXB_NUL 0
#define TXB_S_L 0b00000001
#define TXB_T_L 0b00000010
#define TXB_K_L 0b00000100
#define TXB_P_L 0b00001000
#define TXB_W_L 0b00010000
#define TXB_H_L 0b00100000
#define TXB_R_L 0b01000001
#define TXB_A_L 0b01000010
#define TXB_O_L 0b01000100
#define TXB_STR 0b01001000
#define TXB_E_R 0b01010000
#define TXB_U_R 0b01100000
#define TXB_F_R 0b10000001
#define TXB_R_R 0b10000010
#define TXB_P_R 0b10000100
#define TXB_B_R 0b10001000
#define TXB_L_R 0b10010000
#define TXB_G_R 0b10100000
#define TXB_T_R 0b11000001
#define TXB_S_R 0b11000010
#define TXB_D_R 0b11000100
#define TXB_Z_R 0b11001000
#define TXB_NUM 0b11010000
// All steno keys that have been pressed to form this chord,
// stored in MAX_STROKE_SIZE groups of 8-bit arrays.
static uint8_t chord[MAX_STROKE_SIZE] = {0};
// The number of physical keys actually being held down.
// This is not always equal to the number of 1 bits in `chord` because it is possible to
// simultaneously press down four keys, then release three of those four keys and then press yet
// another key while the fourth finger is still holding down its key.
// At the end of this scenario given as an example, `chord` would have five bits set to 1 but
// `n_pressed_keys` would be set to 2 because there are only two keys currently being pressed down.
static int8_t n_pressed_keys = 0;
#define TXB_GRP0 0b00000000
#define TXB_GRP1 0b01000000
#define TXB_GRP2 0b10000000
#define TXB_GRP3 0b11000000
#define TXB_GRPMASK 0b11000000
#define TXB_GET_GROUP(code) ((code & TXB_GRPMASK) >> 6)
#define BOLT_STATE_SIZE 4
#define GEMINI_STATE_SIZE 6
#define MAX_STATE_SIZE GEMINI_STATE_SIZE
static uint8_t state[MAX_STATE_SIZE] = {0};
static uint8_t chord[MAX_STATE_SIZE] = {0};
static int8_t pressed = 0;
#ifdef STENO_ENABLE_ALL
static steno_mode_t mode;
#elif defined(STENO_ENABLE_GEMINI)
static const steno_mode_t mode = STENO_MODE_GEMINI;
#elif defined(STENO_ENABLE_BOLT)
static const steno_mode_t mode = STENO_MODE_BOLT;
#endif
static inline void steno_clear_chord(void) {
memset(chord, 0, sizeof(chord));
}
#ifdef STENO_ENABLE_GEMINI
# ifdef VIRTSER_ENABLE
void send_steno_chord_gemini(void) {
// Set MSB to 1 to indicate the start of packet
chord[0] |= 0x80;
for (uint8_t i = 0; i < GEMINI_STROKE_SIZE; ++i) {
virtser_send(chord[i]);
}
}
# else
# pragma message "VIRTSER_ENABLE = yes is required for Gemini PR to work properly out of the box!"
# endif // VIRTSER_ENABLE
/**
* @precondition: `key` is pressed
*/
bool add_gemini_key_to_chord(uint8_t key) {
// Although each group of the packet is 8 bits long, the MSB is reserved
// to indicate whether that byte is the first byte of the packet (MSB=1)
// or one of the remaining five bytes of the packet (MSB=0).
// As a consequence, only 7 out of the 8 bits are left to be used as a bit array
// for the steno keys of that group.
const int group_idx = key / 7;
const int intra_group_idx = key - group_idx * 7;
// The 0th steno key of the group has bit=0b01000000, the 1st has bit=0b00100000, etc.
const uint8_t bit = 1 << (6 - intra_group_idx);
chord[group_idx] |= bit;
return false;
}
#endif // STENO_ENABLE_GEMINI
#ifdef STENO_ENABLE_BOLT
# define TXB_GRP0 0b00000000
# define TXB_GRP1 0b01000000
# define TXB_GRP2 0b10000000
# define TXB_GRP3 0b11000000
# define TXB_GRPMASK 0b11000000
# define TXB_GET_GROUP(code) ((code & TXB_GRPMASK) >> 6)
static const uint8_t boltmap[64] PROGMEM = {TXB_NUL, TXB_NUM, TXB_NUM, TXB_NUM, TXB_NUM, TXB_NUM, TXB_NUM, TXB_S_L, TXB_S_L, TXB_T_L, TXB_K_L, TXB_P_L, TXB_W_L, TXB_H_L, TXB_R_L, TXB_A_L, TXB_O_L, TXB_STR, TXB_STR, TXB_NUL, TXB_NUL, TXB_NUL, TXB_STR, TXB_STR, TXB_E_R, TXB_U_R, TXB_F_R, TXB_R_R, TXB_P_R, TXB_B_R, TXB_L_R, TXB_G_R, TXB_T_R, TXB_S_R, TXB_D_R, TXB_NUM, TXB_NUM, TXB_NUM, TXB_NUM, TXB_NUM, TXB_NUM, TXB_Z_R};
# ifdef VIRTSER_ENABLE
static void send_steno_chord_bolt(void) {
for (uint8_t i = 0; i < BOLT_STROKE_SIZE; ++i) {
// TX Bolt uses variable length packets where each byte corresponds to a bit array of certain keys.
// If a user chorded the keys of the first group with keys of the last group, for example, there
// would be bytes of 0x00 in `chord` for the middle groups which we mustn't send.
if (chord[i]) {
virtser_send(chord[i]);
}
}
// Sending a null packet is not always necessary, but it is simpler and more reliable
// to unconditionally send it every time instead of keeping track of more states and
// creating more branches in the execution of the program.
virtser_send(0);
}
# else
# pragma message "VIRTSER_ENABLE = yes is required for TX Bolt to work properly out of the box!"
# endif // VIRTSER_ENABLE
/**
* @precondition: `key` is pressed
*/
static bool add_bolt_key_to_chord(uint8_t key) {
uint8_t boltcode = pgm_read_byte(boltmap + key);
chord[TXB_GET_GROUP(boltcode)] |= boltcode;
return false;
}
#endif // STENO_ENABLE_BOLT
#ifdef STENO_COMBINEDMAP
/* Used to look up when pressing the middle row key to combine two consonant or vowel keys */
static const uint16_t combinedmap_first[] PROGMEM = {STN_S1, STN_TL, STN_PL, STN_HL, STN_FR, STN_PR, STN_LR, STN_TR, STN_DR, STN_A, STN_E};
static const uint16_t combinedmap_second[] PROGMEM = {STN_S2, STN_KL, STN_WL, STN_RL, STN_RR, STN_BR, STN_GR, STN_SR, STN_ZR, STN_O, STN_U};
#endif
static void steno_clear_state(void) {
memset(state, 0, sizeof(state));
memset(chord, 0, sizeof(chord));
}
static void send_steno_state(uint8_t size, bool send_empty) {
for (uint8_t i = 0; i < size; ++i) {
if (chord[i] || send_empty) {
#ifdef VIRTSER_ENABLE
virtser_send(chord[i]);
#endif
}
}
}
#ifdef STENO_ENABLE_ALL
void steno_init() {
if (!eeconfig_is_enabled()) {
eeconfig_init();
@ -94,19 +135,20 @@ void steno_init() {
}
void steno_set_mode(steno_mode_t new_mode) {
steno_clear_state();
steno_clear_chord();
mode = new_mode;
eeprom_update_byte(EECONFIG_STENOMODE, mode);
}
#endif // STENO_ENABLE_ALL
/* override to intercept chords right before they get sent.
* return zero to suppress normal sending behavior.
*/
__attribute__((weak)) bool send_steno_chord_user(steno_mode_t mode, uint8_t chord[6]) {
__attribute__((weak)) bool send_steno_chord_user(steno_mode_t mode, uint8_t chord[MAX_STROKE_SIZE]) {
return true;
}
__attribute__((weak)) bool postprocess_steno_user(uint16_t keycode, keyrecord_t *record, steno_mode_t mode, uint8_t chord[6], int8_t pressed) {
__attribute__((weak)) bool post_process_steno_user(uint16_t keycode, keyrecord_t *record, steno_mode_t mode, uint8_t chord[MAX_STROKE_SIZE], int8_t n_pressed_keys) {
return true;
}
@ -114,108 +156,94 @@ __attribute__((weak)) bool process_steno_user(uint16_t keycode, keyrecord_t *rec
return true;
}
static void send_steno_chord(void) {
if (send_steno_chord_user(mode, chord)) {
switch (mode) {
case STENO_MODE_BOLT:
send_steno_state(BOLT_STATE_SIZE, false);
#ifdef VIRTSER_ENABLE
virtser_send(0); // terminating byte
#endif
break;
case STENO_MODE_GEMINI:
chord[0] |= 0x80; // Indicate start of packet
send_steno_state(GEMINI_STATE_SIZE, true);
break;
}
}
steno_clear_state();
}
uint8_t *steno_get_state(void) {
return &state[0];
}
uint8_t *steno_get_chord(void) {
return &chord[0];
}
static bool update_state_bolt(uint8_t key, bool press) {
uint8_t boltcode = pgm_read_byte(boltmap + key);
if (press) {
state[TXB_GET_GROUP(boltcode)] |= boltcode;
chord[TXB_GET_GROUP(boltcode)] |= boltcode;
} else {
state[TXB_GET_GROUP(boltcode)] &= ~boltcode;
}
return false;
}
static bool update_state_gemini(uint8_t key, bool press) {
int idx = key / 7;
uint8_t bit = 1 << (6 - (key % 7));
if (press) {
state[idx] |= bit;
chord[idx] |= bit;
} else {
state[idx] &= ~bit;
}
return false;
}
bool process_steno(uint16_t keycode, keyrecord_t *record) {
if (keycode < QK_STENO || keycode > QK_STENO_MAX) {
return true; // Not a steno key, pass it further along the chain
/*
* Clearing or sending the chord state is not necessary as we intentionally ignore whatever
* normal keyboard keys the user may have tapped while chording steno keys.
*/
}
if (IS_NOEVENT(record->event)) {
return true;
}
if (!process_steno_user(keycode, record)) {
return false; // User fully processed the steno key themselves
}
switch (keycode) {
#ifdef STENO_ENABLE_ALL
case QK_STENO_BOLT:
if (!process_steno_user(keycode, record)) {
return false;
}
if (IS_PRESSED(record->event)) {
steno_set_mode(STENO_MODE_BOLT);
}
return false;
case QK_STENO_GEMINI:
if (!process_steno_user(keycode, record)) {
return false;
}
if (IS_PRESSED(record->event)) {
steno_set_mode(STENO_MODE_GEMINI);
}
return false;
#endif // STENO_ENABLE_ALL
#ifdef STENO_COMBINEDMAP
case QK_STENO_COMB ... QK_STENO_COMB_MAX: {
uint8_t result;
result = process_steno(combinedmap_first[keycode - QK_STENO_COMB], record);
result &= process_steno(combinedmap_second[keycode - QK_STENO_COMB], record);
return result;
bool first_result = process_steno(combinedmap_first[keycode - QK_STENO_COMB], record);
bool second_result = process_steno(combinedmap_second[keycode - QK_STENO_COMB], record);
return first_result && second_result;
}
#endif
#endif // STENO_COMBINEDMAP
case STN__MIN ... STN__MAX:
if (!process_steno_user(keycode, record)) {
return false;
}
switch (mode) {
case STENO_MODE_BOLT:
update_state_bolt(keycode - QK_STENO, IS_PRESSED(record->event));
break;
case STENO_MODE_GEMINI:
update_state_gemini(keycode - QK_STENO, IS_PRESSED(record->event));
break;
}
// allow postprocessing hooks
if (postprocess_steno_user(keycode, record, mode, chord, pressed)) {
if (IS_PRESSED(record->event)) {
++pressed;
} else {
--pressed;
if (pressed <= 0) {
pressed = 0;
send_steno_chord();
}
if (IS_PRESSED(record->event)) {
n_pressed_keys++;
switch (mode) {
#ifdef STENO_ENABLE_BOLT
case STENO_MODE_BOLT:
add_bolt_key_to_chord(keycode - QK_STENO);
break;
#endif // STENO_ENABLE_BOLT
#ifdef STENO_ENABLE_GEMINI
case STENO_MODE_GEMINI:
add_gemini_key_to_chord(keycode - QK_STENO);
break;
#endif // STENO_ENABLE_GEMINI
default:
return false;
}
if (!post_process_steno_user(keycode, record, mode, chord, n_pressed_keys)) {
return false;
}
} else { // is released
n_pressed_keys--;
if (!post_process_steno_user(keycode, record, mode, chord, n_pressed_keys)) {
return false;
}
if (n_pressed_keys > 0) {
// User hasn't released all keys yet,
// so the chord cannot be sent
return false;
}
n_pressed_keys = 0;
if (!send_steno_chord_user(mode, chord)) {
steno_clear_chord();
return false;
}
switch (mode) {
#if defined(STENO_ENABLE_BOLT) && defined(VIRTSER_ENABLE)
case STENO_MODE_BOLT:
send_steno_chord_bolt();
break;
#endif // STENO_ENABLE_BOLT && VIRTSER_ENABLE
#if defined(STENO_ENABLE_GEMINI) && defined(VIRTSER_ENABLE)
case STENO_MODE_GEMINI:
send_steno_chord_gemini();
break;
#endif // STENO_ENABLE_GEMINI && VIRTSER_ENABLE
default:
break;
}
steno_clear_chord();
}
return false;
break;
}
return true;
return false;
}

View File

@ -18,10 +18,22 @@
#include "quantum.h"
typedef enum { STENO_MODE_BOLT, STENO_MODE_GEMINI } steno_mode_t;
#define BOLT_STROKE_SIZE 4
#define GEMINI_STROKE_SIZE 6
bool process_steno(uint16_t keycode, keyrecord_t *record);
void steno_init(void);
void steno_set_mode(steno_mode_t mode);
uint8_t *steno_get_state(void);
uint8_t *steno_get_chord(void);
#ifdef STENO_ENABLE_GEMINI
# define MAX_STROKE_SIZE GEMINI_STROKE_SIZE
#else
# define MAX_STROKE_SIZE BOLT_STROKE_SIZE
#endif
typedef enum {
STENO_MODE_GEMINI,
STENO_MODE_BOLT,
} steno_mode_t;
bool process_steno(uint16_t keycode, keyrecord_t *record);
#ifdef STENO_ENABLE_ALL
void steno_init(void);
void steno_set_mode(steno_mode_t mode);
#endif // STENO_ENABLE_ALL

View File

@ -15,12 +15,8 @@
*/
#include "quantum.h"
#ifndef NO_ACTION_ONESHOT
uint8_t get_oneshot_mods(void);
#endif
static uint16_t last_td;
static int16_t highest_td = -1;
static uint16_t active_td;
static uint16_t last_tap_time;
void qk_tap_dance_pair_on_each_tap(qk_tap_dance_state_t *state, void *user_data) {
qk_tap_dance_pair_t *pair = (qk_tap_dance_pair_t *)user_data;
@ -34,18 +30,14 @@ void qk_tap_dance_pair_on_each_tap(qk_tap_dance_state_t *state, void *user_data)
void qk_tap_dance_pair_finished(qk_tap_dance_state_t *state, void *user_data) {
qk_tap_dance_pair_t *pair = (qk_tap_dance_pair_t *)user_data;
if (state->count == 1) {
register_code16(pair->kc1);
} else if (state->count == 2) {
register_code16(pair->kc2);
}
register_code16(pair->kc1);
}
void qk_tap_dance_pair_reset(qk_tap_dance_state_t *state, void *user_data) {
qk_tap_dance_pair_t *pair = (qk_tap_dance_pair_t *)user_data;
wait_ms(TAP_CODE_DELAY);
if (state->count == 1) {
wait_ms(TAP_CODE_DELAY);
unregister_code16(pair->kc1);
} else if (state->count == 2) {
unregister_code16(pair->kc2);
@ -87,23 +79,40 @@ static inline void _process_tap_dance_action_fn(qk_tap_dance_state_t *state, voi
}
static inline void process_tap_dance_action_on_each_tap(qk_tap_dance_action_t *action) {
action->state.count++;
action->state.weak_mods = get_mods();
action->state.weak_mods |= get_weak_mods();
#ifndef NO_ACTION_ONESHOT
action->state.oneshot_mods = get_oneshot_mods();
#endif
_process_tap_dance_action_fn(&action->state, action->user_data, action->fn.on_each_tap);
}
void process_tap_dance_action_on_dance_finished(qk_tap_dance_action_t *action) {
if (action->state.finished) return;
action->state.finished = true;
add_mods(action->state.oneshot_mods);
add_weak_mods(action->state.weak_mods);
send_keyboard_report();
_process_tap_dance_action_fn(&action->state, action->user_data, action->fn.on_dance_finished);
}
static inline void process_tap_dance_action_on_reset(qk_tap_dance_action_t *action) {
_process_tap_dance_action_fn(&action->state, action->user_data, action->fn.on_reset);
del_mods(action->state.oneshot_mods);
del_weak_mods(action->state.weak_mods);
#ifndef NO_ACTION_ONESHOT
del_mods(action->state.oneshot_mods);
#endif
send_keyboard_report();
action->state = (const qk_tap_dance_state_t){0};
}
void process_tap_dance_action_on_dance_finished(qk_tap_dance_action_t *action) {
if (!action->state.finished) {
action->state.finished = true;
add_weak_mods(action->state.weak_mods);
#ifndef NO_ACTION_ONESHOT
add_mods(action->state.oneshot_mods);
#endif
send_keyboard_report();
_process_tap_dance_action_fn(&action->state, action->user_data, action->fn.on_dance_finished);
}
active_td = 0;
if (!action->state.pressed) {
// There will not be a key release event, so reset now.
process_tap_dance_action_on_reset(action);
}
}
void preprocess_tap_dance(uint16_t keycode, keyrecord_t *record) {
@ -111,51 +120,33 @@ void preprocess_tap_dance(uint16_t keycode, keyrecord_t *record) {
if (!record->event.pressed) return;
if (highest_td == -1) return;
if (!active_td || keycode == active_td) return;
for (int i = 0; i <= highest_td; i++) {
action = &tap_dance_actions[i];
if (action->state.count) {
if (keycode == action->state.keycode && keycode == last_td) continue;
action->state.interrupted = true;
action->state.interrupting_keycode = keycode;
process_tap_dance_action_on_dance_finished(action);
reset_tap_dance(&action->state);
action = &tap_dance_actions[TD_INDEX(active_td)];
action->state.interrupted = true;
action->state.interrupting_keycode = keycode;
process_tap_dance_action_on_dance_finished(action);
// Tap dance actions can leave some weak mods active (e.g., if the tap dance is mapped to a keycode with
// modifiers), but these weak mods should not affect the keypress which interrupted the tap dance.
clear_weak_mods();
}
}
// Tap dance actions can leave some weak mods active (e.g., if the tap dance is mapped to a keycode with
// modifiers), but these weak mods should not affect the keypress which interrupted the tap dance.
clear_weak_mods();
}
bool process_tap_dance(uint16_t keycode, keyrecord_t *record) {
uint16_t idx = keycode - QK_TAP_DANCE;
qk_tap_dance_action_t *action;
switch (keycode) {
case QK_TAP_DANCE ... QK_TAP_DANCE_MAX:
if ((int16_t)idx > highest_td) highest_td = idx;
action = &tap_dance_actions[idx];
action = &tap_dance_actions[TD_INDEX(keycode)];
action->state.pressed = record->event.pressed;
if (record->event.pressed) {
action->state.keycode = keycode;
action->state.count++;
action->state.timer = timer_read();
#ifndef NO_ACTION_ONESHOT
action->state.oneshot_mods = get_oneshot_mods();
#else
action->state.oneshot_mods = 0;
#endif
action->state.weak_mods = get_mods();
action->state.weak_mods |= get_weak_mods();
last_tap_time = timer_read();
process_tap_dance_action_on_each_tap(action);
last_td = keycode;
active_td = action->state.finished ? 0 : keycode;
} else {
if (action->state.count && action->state.finished) {
reset_tap_dance(&action->state);
if (action->state.finished) {
process_tap_dance_action_on_reset(action);
}
}
@ -166,35 +157,17 @@ bool process_tap_dance(uint16_t keycode, keyrecord_t *record) {
}
void tap_dance_task() {
if (highest_td == -1) return;
uint16_t tap_user_defined;
qk_tap_dance_action_t *action;
for (uint8_t i = 0; i <= highest_td; i++) {
qk_tap_dance_action_t *action = &tap_dance_actions[i];
if (action->custom_tapping_term > 0) {
tap_user_defined = action->custom_tapping_term;
} else {
tap_user_defined = GET_TAPPING_TERM(action->state.keycode, &(keyrecord_t){});
}
if (action->state.count && timer_elapsed(action->state.timer) > tap_user_defined) {
process_tap_dance_action_on_dance_finished(action);
reset_tap_dance(&action->state);
}
if (!active_td || timer_elapsed(last_tap_time) <= GET_TAPPING_TERM(active_td, &(keyrecord_t){})) return;
action = &tap_dance_actions[TD_INDEX(active_td)];
if (!action->state.interrupted) {
process_tap_dance_action_on_dance_finished(action);
}
}
void reset_tap_dance(qk_tap_dance_state_t *state) {
qk_tap_dance_action_t *action;
if (state->pressed) return;
action = &tap_dance_actions[state->keycode - QK_TAP_DANCE];
process_tap_dance_action_on_reset(action);
state->count = 0;
state->interrupted = false;
state->finished = false;
state->interrupting_keycode = 0;
last_td = 0;
active_td = 0;
process_tap_dance_action_on_reset((qk_tap_dance_action_t *)state);
}

View File

@ -22,30 +22,27 @@
# include <inttypes.h>
typedef struct {
uint8_t count;
uint8_t oneshot_mods;
uint8_t weak_mods;
uint16_t keycode;
uint16_t interrupting_keycode;
uint16_t timer;
bool interrupted;
bool pressed;
bool finished;
uint8_t count;
uint8_t weak_mods;
# ifndef NO_ACTION_ONESHOT
uint8_t oneshot_mods;
# endif
bool pressed : 1;
bool finished : 1;
bool interrupted : 1;
} qk_tap_dance_state_t;
# define TD(n) (QK_TAP_DANCE | ((n)&0xFF))
typedef void (*qk_tap_dance_user_fn_t)(qk_tap_dance_state_t *state, void *user_data);
typedef struct {
qk_tap_dance_state_t state;
struct {
qk_tap_dance_user_fn_t on_each_tap;
qk_tap_dance_user_fn_t on_dance_finished;
qk_tap_dance_user_fn_t on_reset;
} fn;
qk_tap_dance_state_t state;
uint16_t custom_tapping_term;
void * user_data;
void *user_data;
} qk_tap_dance_action_t;
typedef struct {
@ -62,31 +59,31 @@ typedef struct {
# define ACTION_TAP_DANCE_DOUBLE(kc1, kc2) \
{ .fn = {qk_tap_dance_pair_on_each_tap, qk_tap_dance_pair_finished, qk_tap_dance_pair_reset}, .user_data = (void *)&((qk_tap_dance_pair_t){kc1, kc2}), }
# define ACTION_TAP_DANCE_DUAL_ROLE(kc, layer) \
# define ACTION_TAP_DANCE_LAYER_MOVE(kc, layer) \
{ .fn = {qk_tap_dance_dual_role_on_each_tap, qk_tap_dance_dual_role_finished, qk_tap_dance_dual_role_reset}, .user_data = (void *)&((qk_tap_dance_dual_role_t){kc, layer, layer_move}), }
# define ACTION_TAP_DANCE_LAYER_TOGGLE(kc, layer) \
{ .fn = {NULL, qk_tap_dance_dual_role_finished, qk_tap_dance_dual_role_reset}, .user_data = (void *)&((qk_tap_dance_dual_role_t){kc, layer, layer_invert}), }
# define ACTION_TAP_DANCE_LAYER_MOVE(kc, layer) ACTION_TAP_DANCE_DUAL_ROLE(kc, layer)
# define ACTION_TAP_DANCE_FN(user_fn) \
{ .fn = {NULL, user_fn, NULL}, .user_data = NULL, }
# define ACTION_TAP_DANCE_FN_ADVANCED(user_fn_on_each_tap, user_fn_on_dance_finished, user_fn_on_dance_reset) \
{ .fn = {user_fn_on_each_tap, user_fn_on_dance_finished, user_fn_on_dance_reset}, .user_data = NULL, }
# define ACTION_TAP_DANCE_FN_ADVANCED_TIME(user_fn_on_each_tap, user_fn_on_dance_finished, user_fn_on_dance_reset, tap_specific_tapping_term) \
{ .fn = {user_fn_on_each_tap, user_fn_on_dance_finished, user_fn_on_dance_reset}, .user_data = NULL, .custom_tapping_term = tap_specific_tapping_term, }
# define TD(n) (QK_TAP_DANCE | TD_INDEX(n))
# define TD_INDEX(code) ((code)&0xFF)
# define TAP_DANCE_KEYCODE(state) TD(((qk_tap_dance_action_t *)state) - tap_dance_actions)
extern qk_tap_dance_action_t tap_dance_actions[];
void reset_tap_dance(qk_tap_dance_state_t *state);
/* To be used internally */
void preprocess_tap_dance(uint16_t keycode, keyrecord_t *record);
bool process_tap_dance(uint16_t keycode, keyrecord_t *record);
void tap_dance_task(void);
void reset_tap_dance(qk_tap_dance_state_t *state);
void qk_tap_dance_pair_on_each_tap(qk_tap_dance_state_t *state, void *user_data);
void qk_tap_dance_pair_finished(qk_tap_dance_state_t *state, void *user_data);

View File

@ -1,330 +0,0 @@
/* Copyright 2017 Jack Humbert
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "process_terminal.h"
#include <string.h>
#include "version.h"
#include <stdio.h>
#include <math.h>
#ifndef CMD_BUFF_SIZE
# define CMD_BUFF_SIZE 5
#endif
bool terminal_enabled = false;
char buffer[80] = "";
char cmd_buffer[CMD_BUFF_SIZE][80];
bool cmd_buffer_enabled = true; // replace with ifdef?
char newline[2] = "\n";
char arguments[6][20];
bool firstTime = true;
short int current_cmd_buffer_pos = 0; // used for up/down arrows - keeps track of where you are in the command buffer
__attribute__((weak)) const char terminal_prompt[8] = "> ";
#ifdef AUDIO_ENABLE
# ifndef TERMINAL_SONG
# define TERMINAL_SONG SONG(TERMINAL_SOUND)
# endif
float terminal_song[][2] = TERMINAL_SONG;
# define TERMINAL_BELL() PLAY_SONG(terminal_song)
#else
# define TERMINAL_BELL()
#endif
__attribute__((weak)) const char keycode_to_ascii_lut[58] = {0, 0, 0, 0, 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', 0, 0, 0, '\t', ' ', '-', '=', '[', ']', '\\', 0, ';', '\'', '`', ',', '.', '/'};
__attribute__((weak)) const char shifted_keycode_to_ascii_lut[58] = {0, 0, 0, 0, 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '!', '@', '#', '$', '%', '^', '&', '*', '(', ')', 0, 0, 0, '\t', ' ', '_', '+', '{', '}', '|', 0, ':', '\'', '~', '<', '>', '?'};
struct stringcase {
char *string;
void (*func)(void);
} typedef stringcase;
void enable_terminal(void) {
terminal_enabled = true;
strcpy(buffer, "");
memset(cmd_buffer, 0, CMD_BUFF_SIZE * 80);
for (int i = 0; i < 6; i++)
strcpy(arguments[i], "");
// select all text to start over
// SEND_STRING(SS_LCTL("a"));
send_string(terminal_prompt);
}
void disable_terminal(void) {
terminal_enabled = false;
SEND_STRING("\n");
}
void push_to_cmd_buffer(void) {
if (cmd_buffer_enabled) {
if (cmd_buffer == NULL) {
return;
} else {
if (firstTime) {
firstTime = false;
strcpy(cmd_buffer[0], buffer);
return;
}
for (int i = CMD_BUFF_SIZE - 1; i > 0; --i) {
strncpy(cmd_buffer[i], cmd_buffer[i - 1], 80);
}
strcpy(cmd_buffer[0], buffer);
return;
}
}
}
void terminal_about(void) {
SEND_STRING("QMK Firmware\n");
SEND_STRING(" v");
SEND_STRING(QMK_VERSION);
SEND_STRING("\n" SS_TAP(X_HOME) " Built: ");
SEND_STRING(QMK_BUILDDATE);
send_string(newline);
#ifdef TERMINAL_HELP
if (strlen(arguments[1]) != 0) {
SEND_STRING("You entered: ");
send_string(arguments[1]);
send_string(newline);
}
#endif
}
void terminal_help(void);
extern const uint16_t keymaps[][MATRIX_ROWS][MATRIX_COLS];
void terminal_keycode(void) {
if (strlen(arguments[1]) != 0 && strlen(arguments[2]) != 0 && strlen(arguments[3]) != 0) {
char keycode_dec[5];
char keycode_hex[5];
uint16_t layer = strtol(arguments[1], (char **)NULL, 10);
uint16_t row = strtol(arguments[2], (char **)NULL, 10);
uint16_t col = strtol(arguments[3], (char **)NULL, 10);
uint16_t keycode = pgm_read_word(&keymaps[layer][row][col]);
itoa(keycode, keycode_dec, 10);
itoa(keycode, keycode_hex, 16);
SEND_STRING("0x");
send_string(keycode_hex);
SEND_STRING(" (");
send_string(keycode_dec);
SEND_STRING(")\n");
} else {
#ifdef TERMINAL_HELP
SEND_STRING("usage: keycode <layer> <row> <col>\n");
#endif
}
}
void terminal_keymap(void) {
if (strlen(arguments[1]) != 0) {
uint16_t layer = strtol(arguments[1], (char **)NULL, 10);
for (int r = 0; r < MATRIX_ROWS; r++) {
for (int c = 0; c < MATRIX_COLS; c++) {
uint16_t keycode = pgm_read_word(&keymaps[layer][r][c]);
char keycode_s[8];
sprintf(keycode_s, "0x%04x,", keycode);
send_string(keycode_s);
}
send_string(newline);
}
} else {
#ifdef TERMINAL_HELP
SEND_STRING("usage: keymap <layer>\n");
#endif
}
}
void print_cmd_buff(void) {
/* without the below wait, a race condition can occur wherein the
buffer can be printed before it has been fully moved */
wait_ms(250);
for (int i = 0; i < CMD_BUFF_SIZE; i++) {
char tmpChar = ' ';
itoa(i, &tmpChar, 10);
const char *tmpCnstCharStr = &tmpChar; // because sned_string wont take a normal char *
send_string(tmpCnstCharStr);
SEND_STRING(". ");
send_string(cmd_buffer[i]);
SEND_STRING("\n");
}
}
void flush_cmd_buffer(void) {
memset(cmd_buffer, 0, CMD_BUFF_SIZE * 80);
SEND_STRING("Buffer Cleared!\n");
}
stringcase terminal_cases[] = {{"about", terminal_about}, {"help", terminal_help}, {"keycode", terminal_keycode}, {"keymap", terminal_keymap}, {"flush-buffer", flush_cmd_buffer}, {"print-buffer", print_cmd_buff}, {"exit", disable_terminal}};
void terminal_help(void) {
SEND_STRING("commands available:\n ");
for (stringcase *case_p = terminal_cases; case_p != terminal_cases + sizeof(terminal_cases) / sizeof(terminal_cases[0]); case_p++) {
send_string(case_p->string);
SEND_STRING(" ");
}
send_string(newline);
}
void command_not_found(void) {
wait_ms(50); // sometimes buffer isnt grabbed quick enough
SEND_STRING("command \"");
send_string(buffer);
SEND_STRING("\" not found\n");
}
void process_terminal_command(void) {
// we capture return bc of the order of events, so we need to manually send a newline
send_string(newline);
char * pch;
uint8_t i = 0;
pch = strtok(buffer, " ");
while (pch != NULL) {
strcpy(arguments[i], pch);
pch = strtok(NULL, " ");
i++;
}
bool command_found = false;
for (stringcase *case_p = terminal_cases; case_p != terminal_cases + sizeof(terminal_cases) / sizeof(terminal_cases[0]); case_p++) {
if (0 == strcmp(case_p->string, buffer)) {
command_found = true;
(*case_p->func)();
break;
}
}
if (!command_found) command_not_found();
if (terminal_enabled) {
strcpy(buffer, "");
for (int i = 0; i < 6; i++)
strcpy(arguments[i], "");
SEND_STRING(SS_TAP(X_HOME));
send_string(terminal_prompt);
}
}
void check_pos(void) {
if (current_cmd_buffer_pos >= CMD_BUFF_SIZE) { // if over the top, move it back down to the top of the buffer so you can climb back down...
current_cmd_buffer_pos = CMD_BUFF_SIZE - 1;
} else if (current_cmd_buffer_pos < 0) { //...and if you fall under the bottom of the buffer, reset back to 0 so you can climb back up
current_cmd_buffer_pos = 0;
}
}
bool process_terminal(uint16_t keycode, keyrecord_t *record) {
if (keycode == TERM_ON && record->event.pressed) {
enable_terminal();
return false;
}
if (terminal_enabled && record->event.pressed) {
if (keycode == TERM_OFF && record->event.pressed) {
disable_terminal();
return false;
}
if ((keycode >= QK_MOD_TAP && keycode <= QK_MOD_TAP_MAX) || (keycode >= QK_LAYER_TAP && keycode <= QK_LAYER_TAP_MAX)) {
keycode = keycode & 0xFF;
}
if (keycode < 256) {
uint8_t str_len;
char char_to_add;
switch (keycode) {
case KC_ENTER:
case KC_KP_ENTER:
push_to_cmd_buffer();
current_cmd_buffer_pos = 0;
process_terminal_command();
return false;
break;
case KC_ESCAPE:
SEND_STRING("\n");
enable_terminal();
return false;
break;
case KC_BACKSPACE:
str_len = strlen(buffer);
if (str_len > 0) {
buffer[str_len - 1] = 0;
return true;
} else {
TERMINAL_BELL();
return false;
}
break;
case KC_LEFT:
return false;
break;
case KC_RIGHT:
return false;
break;
case KC_UP: // 0 = recent
check_pos(); // check our current buffer position is valid
if (current_cmd_buffer_pos <= CMD_BUFF_SIZE - 1) { // once we get to the top, dont do anything
str_len = strlen(buffer);
for (int i = 0; i < str_len; ++i) {
send_string(SS_TAP(X_BSPACE)); // clear w/e is on the line already
// process_terminal(KC_BACKSPACE,record);
}
strncpy(buffer, cmd_buffer[current_cmd_buffer_pos], 80);
send_string(buffer);
++current_cmd_buffer_pos; // get ready to access the above cmd if up/down is pressed again
}
return false;
break;
case KC_DOWN:
check_pos();
if (current_cmd_buffer_pos >= 0) { // once we get to the bottom, dont do anything
str_len = strlen(buffer);
for (int i = 0; i < str_len; ++i) {
send_string(SS_TAP(X_BSPACE)); // clear w/e is on the line already
// process_terminal(KC_BACKSPACE,record);
}
strncpy(buffer, cmd_buffer[current_cmd_buffer_pos], 79);
send_string(buffer);
--current_cmd_buffer_pos; // get ready to access the above cmd if down/up is pressed again
}
return false;
break;
default:
if (keycode <= 58) {
char_to_add = 0;
if (get_mods() & (MOD_BIT(KC_LEFT_SHIFT) | MOD_BIT(KC_RIGHT_SHIFT))) {
char_to_add = shifted_keycode_to_ascii_lut[keycode];
} else if (get_mods() == 0) {
char_to_add = keycode_to_ascii_lut[keycode];
}
if (char_to_add != 0) {
strncat(buffer, &char_to_add, 1);
}
}
break;
}
}
}
return true;
}

View File

@ -1,24 +0,0 @@
/* Copyright 2017 Jack Humbert
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "quantum.h"
extern const char keycode_to_ascii_lut[58];
extern const char shifted_keycode_to_ascii_lut[58];
extern const char terminal_prompt[8];
bool process_terminal(uint16_t keycode, keyrecord_t *record);

View File

@ -1,22 +0,0 @@
/* Copyright 2017 Jack Humbert
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "quantum.h"
#define TERM_ON KC_NO
#define TERM_OFF KC_NO

View File

@ -117,6 +117,12 @@ __attribute__((weak)) void unicode_input_start(void) {
tap_code(UNICODE_KEY_WINC);
tap_code(KC_U);
break;
case UC_EMACS:
// The usual way to type unicode in emacs is C-x-8 <RET> then the unicode number in hex
tap_code16(LCTL(KC_X));
tap_code16(KC_8);
tap_code16(KC_ENTER);
break;
}
wait_ms(UNICODE_TYPE_DELAY);
@ -142,6 +148,9 @@ __attribute__((weak)) void unicode_input_finish(void) {
case UC_WINC:
tap_code(KC_ENTER);
break;
case UC_EMACS:
tap_code16(KC_ENTER);
break;
}
set_mods(unicode_saved_mods); // Reregister previously set mods
@ -167,6 +176,9 @@ __attribute__((weak)) void unicode_input_cancel(void) {
tap_code(KC_NUM_LOCK);
}
break;
case UC_EMACS:
tap_code16(LCTL(KC_G)); // C-g cancels
break;
}
set_mods(unicode_saved_mods); // Reregister previously set mods
@ -299,14 +311,30 @@ bool process_unicode_common(uint16_t keycode, keyrecord_t *record) {
cycle_unicode_input_mode(shifted ? +1 : -1);
audio_helper();
break;
case UNICODE_MODE_MAC ... UNICODE_MODE_WINC: {
// Keycodes and input modes follow the same ordering
uint8_t delta = keycode - UNICODE_MODE_MAC;
set_unicode_input_mode(UC_MAC + delta);
case UNICODE_MODE_MAC:
set_unicode_input_mode(UC_MAC);
audio_helper();
break;
case UNICODE_MODE_LNX:
set_unicode_input_mode(UC_LNX);
audio_helper();
break;
case UNICODE_MODE_WIN:
set_unicode_input_mode(UC_WIN);
audio_helper();
break;
case UNICODE_MODE_BSD:
set_unicode_input_mode(UC_BSD);
audio_helper();
break;
case UNICODE_MODE_WINC:
set_unicode_input_mode(UC_WINC);
audio_helper();
break;
case UNICODE_MODE_EMACS:
set_unicode_input_mode(UC_EMACS);
audio_helper();
break;
}
}
}

View File

@ -64,6 +64,7 @@ enum unicode_input_modes {
UC_WIN, // Windows using EnableHexNumpad
UC_BSD, // BSD (not implemented)
UC_WINC, // Windows using WinCompose (https://github.com/samhocevar/wincompose)
UC_EMACS, // Emacs is an operating system in search of a good text editor
UC__COUNT // Number of available input modes (always leave at the end)
};