eeprom_stm32: implement high density wear leveling (#12567)
* eeprom_stm32: implement wear leveling Update EECONFIG_MAGIC_NUMBER eeprom_stm32: check emulated eeprom size is large enough * eeprom_stm32: Increasing simulated EEPROM density on stm32 * Adding utility script to decode emulated eeprom * Adding unit tests * Applying qmk cformat changes * cleaned up flash mocking * Fix for stm32eeprom_parser.py checking via signature with wrong base * Fix for nk65 keyboard Co-authored-by: Ilya Zhuravlev <whatever@xyz.is> Co-authored-by: zvecr <git@zvecr.com>
This commit is contained in:
@ -14,185 +14,751 @@
|
||||
* Artur F.
|
||||
*
|
||||
* Modifications for QMK and STM32F303 by Yiancar
|
||||
* Modifications to add flash wear leveling by Ilya Zhuravlev
|
||||
* Modifications to increase flash density by Don Kjer
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <stdbool.h>
|
||||
#include "debug.h"
|
||||
#include "eeprom_stm32.h"
|
||||
/*****************************************************************************
|
||||
* Allows to use the internal flash to store non volatile data. To initialize
|
||||
* the functionality use the EEPROM_Init() function. Be sure that by reprogramming
|
||||
* of the controller just affected pages will be deleted. In other case the non
|
||||
* volatile data will be lost.
|
||||
******************************************************************************/
|
||||
#include "flash_stm32.h"
|
||||
|
||||
/* Private macro -------------------------------------------------------------*/
|
||||
/* Private variables ---------------------------------------------------------*/
|
||||
/* Functions -----------------------------------------------------------------*/
|
||||
/*
|
||||
* We emulate eeprom by writing a snapshot compacted view of eeprom contents,
|
||||
* followed by a write log of any change since that snapshot:
|
||||
*
|
||||
* === SIMULATED EEPROM CONTENTS ===
|
||||
*
|
||||
* ┌─ Compacted ┬ Write Log ─┐
|
||||
* │............│[BYTE][BYTE]│
|
||||
* │FFFF....FFFF│[WRD0][WRD1]│
|
||||
* │FFFFFFFFFFFF│[WORD][NEXT]│
|
||||
* │....FFFFFFFF│[BYTE][WRD0]│
|
||||
* ├────────────┼────────────┤
|
||||
* └──PAGE_BASE │ │
|
||||
* PAGE_LAST─┴─WRITE_BASE │
|
||||
* WRITE_LAST ┘
|
||||
*
|
||||
* Compacted contents are the 1's complement of the actual EEPROM contents.
|
||||
* e.g. An 'FFFF' represents a '0000' value.
|
||||
*
|
||||
* The size of the 'compacted' area is equal to the size of the 'emulated' eeprom.
|
||||
* The size of the compacted-area and write log are configurable, and the combined
|
||||
* size of Compacted + WriteLog is a multiple FEE_PAGE_SIZE, which is MCU dependent.
|
||||
* Simulated Eeprom contents are located at the end of available flash space.
|
||||
*
|
||||
* The following configuration defines can be set:
|
||||
*
|
||||
* FEE_DENSITY_PAGES # Total number of pages to use for eeprom simulation (Compact + Write log)
|
||||
* FEE_DENSITY_BYTES # Size of simulated eeprom. (Defaults to half the space allocated by FEE_DENSITY_PAGES)
|
||||
* NOTE: The current implementation does not include page swapping,
|
||||
* and FEE_DENSITY_BYTES will consume that amount of RAM as a cached view of actual EEPROM contents.
|
||||
*
|
||||
* The maximum size of FEE_DENSITY_BYTES is currently 16384. The write log size equals
|
||||
* FEE_DENSITY_PAGES * FEE_PAGE_SIZE - FEE_DENSITY_BYTES.
|
||||
* The larger the write log, the less frequently the compacted area needs to be rewritten.
|
||||
*
|
||||
*
|
||||
* *** General Algorithm ***
|
||||
*
|
||||
* During initialization:
|
||||
* The contents of the Compacted-flash area are loaded and the 1's complement value
|
||||
* is cached into memory (e.g. 0xFFFF in Flash represents 0x0000 in cache).
|
||||
* Write log entries are processed until a 0xFFFF is reached.
|
||||
* Each log entry updates a byte or word in the cache.
|
||||
*
|
||||
* During reads:
|
||||
* EEPROM contents are given back directly from the cache in memory.
|
||||
*
|
||||
* During writes:
|
||||
* The contents of the cache is updated first.
|
||||
* If the Compacted-flash area corresponding to the write address is unprogrammed, the 1's complement of the value is written directly into Compacted-flash
|
||||
* Otherwise:
|
||||
* If the write log is full, erase both the Compacted-flash area and the Write log, then write cached contents to the Compacted-flash area.
|
||||
* Otherwise a Write log entry is constructed and appended to the next free position in the Write log.
|
||||
*
|
||||
*
|
||||
* *** Write Log Structure ***
|
||||
*
|
||||
* Write log entries allow for optimized byte writes to addresses below 128. Writing 0 or 1 words are also optimized when word-aligned.
|
||||
*
|
||||
* === WRITE LOG ENTRY FORMATS ===
|
||||
*
|
||||
* ╔═══ Byte-Entry ══╗
|
||||
* ║0XXXXXXX║YYYYYYYY║
|
||||
* ║ └──┬──┘║└──┬───┘║
|
||||
* ║ Address║ Value ║
|
||||
* ╚════════╩════════╝
|
||||
* 0 <= Address < 0x80 (128)
|
||||
*
|
||||
* ╔ Word-Encoded 0 ╗
|
||||
* ║100XXXXXXXXXXXXX║
|
||||
* ║ │└─────┬─────┘║
|
||||
* ║ │Address >> 1 ║
|
||||
* ║ └── Value: 0 ║
|
||||
* ╚════════════════╝
|
||||
* 0 <= Address <= 0x3FFE (16382)
|
||||
*
|
||||
* ╔ Word-Encoded 1 ╗
|
||||
* ║101XXXXXXXXXXXXX║
|
||||
* ║ │└─────┬─────┘║
|
||||
* ║ │Address >> 1 ║
|
||||
* ║ └── Value: 1 ║
|
||||
* ╚════════════════╝
|
||||
* 0 <= Address <= 0x3FFE (16382)
|
||||
*
|
||||
* ╔═══ Reserved ═══╗
|
||||
* ║110XXXXXXXXXXXXX║
|
||||
* ╚════════════════╝
|
||||
*
|
||||
* ╔═══════════ Word-Next ═══════════╗
|
||||
* ║111XXXXXXXXXXXXX║YYYYYYYYYYYYYYYY║
|
||||
* ║ └─────┬─────┘║└───────┬──────┘║
|
||||
* ║(Address-128)>>1║ ~Value ║
|
||||
* ╚════════════════╩════════════════╝
|
||||
* ( 0 <= Address < 0x0080 (128): Reserved)
|
||||
* 0x80 <= Address <= 0x3FFE (16382)
|
||||
*
|
||||
* Write Log entry ranges:
|
||||
* 0x0000 ... 0x7FFF - Byte-Entry; address is (Entry & 0x7F00) >> 4; value is (Entry & 0xFF)
|
||||
* 0x8000 ... 0x9FFF - Word-Encoded 0; address is (Entry & 0x1FFF) << 1; value is 0
|
||||
* 0xA000 ... 0xBFFF - Word-Encoded 1; address is (Entry & 0x1FFF) << 1; value is 1
|
||||
* 0xC000 ... 0xDFFF - Reserved
|
||||
* 0xE000 ... 0xFFBF - Word-Next; address is (Entry & 0x1FFF) << 1 + 0x80; value is ~(Next_Entry)
|
||||
* 0xFFC0 ... 0xFFFE - Reserved
|
||||
* 0xFFFF - Unprogrammed
|
||||
*
|
||||
*/
|
||||
|
||||
/* These bits are used for optimizing encoding of bytes, 0 and 1 */
|
||||
#define FEE_WORD_ENCODING 0x8000
|
||||
#define FEE_VALUE_NEXT 0x6000
|
||||
#define FEE_VALUE_RESERVED 0x4000
|
||||
#define FEE_VALUE_ENCODED 0x2000
|
||||
#define FEE_BYTE_RANGE 0x80
|
||||
|
||||
// HACK ALERT. This definition may not match your processor
|
||||
// To Do. Work out correct value for EEPROM_PAGE_SIZE on the STM32F103CT6 etc
|
||||
#if defined(EEPROM_EMU_STM32F303xC)
|
||||
# define MCU_STM32F303CC
|
||||
#elif defined(EEPROM_EMU_STM32F103xB)
|
||||
# define MCU_STM32F103RB
|
||||
#elif defined(EEPROM_EMU_STM32F072xB)
|
||||
# define MCU_STM32F072CB
|
||||
#elif defined(EEPROM_EMU_STM32F042x6)
|
||||
# define MCU_STM32F042K6
|
||||
#elif !defined(FEE_PAGE_SIZE) || !defined(FEE_DENSITY_PAGES) || !defined(FEE_MCU_FLASH_SIZE)
|
||||
# error "not implemented."
|
||||
#endif
|
||||
|
||||
#if !defined(FEE_PAGE_SIZE) || !defined(FEE_DENSITY_PAGES)
|
||||
# if defined(MCU_STM32F103RB) || defined(MCU_STM32F042K6)
|
||||
# ifndef FEE_PAGE_SIZE
|
||||
# define FEE_PAGE_SIZE 0x400 // Page size = 1KByte
|
||||
# endif
|
||||
# ifndef FEE_DENSITY_PAGES
|
||||
# define FEE_DENSITY_PAGES 2 // How many pages are used
|
||||
# endif
|
||||
# elif defined(MCU_STM32F103ZE) || defined(MCU_STM32F103RE) || defined(MCU_STM32F103RD) || defined(MCU_STM32F303CC) || defined(MCU_STM32F072CB)
|
||||
# ifndef FEE_PAGE_SIZE
|
||||
# define FEE_PAGE_SIZE 0x800 // Page size = 2KByte
|
||||
# endif
|
||||
# ifndef FEE_DENSITY_PAGES
|
||||
# define FEE_DENSITY_PAGES 4 // How many pages are used
|
||||
# endif
|
||||
# else
|
||||
# error "No MCU type specified. Add something like -DMCU_STM32F103RB to your compiler arguments (probably in a Makefile)."
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef FEE_MCU_FLASH_SIZE
|
||||
# if defined(MCU_STM32F103RB) || defined(MCU_STM32F072CB)
|
||||
# define FEE_MCU_FLASH_SIZE 128 // Size in Kb
|
||||
# elif defined(MCU_STM32F042K6)
|
||||
# define FEE_MCU_FLASH_SIZE 32 // Size in Kb
|
||||
# elif defined(MCU_STM32F103ZE) || defined(MCU_STM32F103RE)
|
||||
# define FEE_MCU_FLASH_SIZE 512 // Size in Kb
|
||||
# elif defined(MCU_STM32F103RD)
|
||||
# define FEE_MCU_FLASH_SIZE 384 // Size in Kb
|
||||
# elif defined(MCU_STM32F303CC)
|
||||
# define FEE_MCU_FLASH_SIZE 256 // Size in Kb
|
||||
# else
|
||||
# error "No MCU type specified. Add something like -DMCU_STM32F103RB to your compiler arguments (probably in a Makefile)."
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#define FEE_XSTR(x) FEE_STR(x)
|
||||
#define FEE_STR(x) #x
|
||||
|
||||
/* Size of combined compacted eeprom and write log pages */
|
||||
#define FEE_DENSITY_MAX_SIZE (FEE_DENSITY_PAGES * FEE_PAGE_SIZE)
|
||||
/* Addressable range 16KByte: 0 <-> (0x1FFF << 1) */
|
||||
#define FEE_ADDRESS_MAX_SIZE 0x4000
|
||||
|
||||
#ifndef EEPROM_START_ADDRESS /* *TODO: Get rid of this check */
|
||||
# if FEE_DENSITY_MAX_SIZE > (FEE_MCU_FLASH_SIZE * 1024)
|
||||
# pragma message FEE_XSTR(FEE_DENSITY_MAX_SIZE) " > " FEE_XSTR(FEE_MCU_FLASH_SIZE * 1024)
|
||||
# error emulated eeprom: FEE_DENSITY_PAGES is greater than available flash size
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* Size of emulated eeprom */
|
||||
#ifdef FEE_DENSITY_BYTES
|
||||
# if (FEE_DENSITY_BYTES > FEE_DENSITY_MAX_SIZE)
|
||||
# pragma message FEE_XSTR(FEE_DENSITY_BYTES) " > " FEE_XSTR(FEE_DENSITY_MAX_SIZE)
|
||||
# error emulated eeprom: FEE_DENSITY_BYTES exceeds FEE_DENSITY_MAX_SIZE
|
||||
# endif
|
||||
# if (FEE_DENSITY_BYTES == FEE_DENSITY_MAX_SIZE)
|
||||
# pragma message FEE_XSTR(FEE_DENSITY_BYTES) " == " FEE_XSTR(FEE_DENSITY_MAX_SIZE)
|
||||
# warning emulated eeprom: FEE_DENSITY_BYTES leaves no room for a write log. This will greatly increase the flash wear rate!
|
||||
# endif
|
||||
# if FEE_DENSITY_BYTES > FEE_ADDRESS_MAX_SIZE
|
||||
# pragma message FEE_XSTR(FEE_DENSITY_BYTES) " > " FEE_XSTR(FEE_ADDRESS_MAX_SIZE)
|
||||
# error emulated eeprom: FEE_DENSITY_BYTES is greater than FEE_ADDRESS_MAX_SIZE allows
|
||||
# endif
|
||||
# if ((FEE_DENSITY_BYTES) % 2) == 1
|
||||
# error emulated eeprom: FEE_DENSITY_BYTES must be even
|
||||
# endif
|
||||
#else
|
||||
/* Default to half of allocated space used for emulated eeprom, half for write log */
|
||||
# define FEE_DENSITY_BYTES (FEE_DENSITY_PAGES * FEE_PAGE_SIZE / 2)
|
||||
#endif
|
||||
|
||||
/* Size of write log */
|
||||
#define FEE_WRITE_LOG_BYTES (FEE_DENSITY_PAGES * FEE_PAGE_SIZE - FEE_DENSITY_BYTES)
|
||||
|
||||
/* Start of the emulated eeprom compacted flash area */
|
||||
#ifndef FEE_FLASH_BASE
|
||||
# define FEE_FLASH_BASE 0x8000000
|
||||
#endif
|
||||
#define FEE_PAGE_BASE_ADDRESS ((uintptr_t)(FEE_FLASH_BASE) + FEE_MCU_FLASH_SIZE * 1024 - FEE_WRITE_LOG_BYTES - FEE_DENSITY_BYTES)
|
||||
/* End of the emulated eeprom compacted flash area */
|
||||
#define FEE_PAGE_LAST_ADDRESS (FEE_PAGE_BASE_ADDRESS + FEE_DENSITY_BYTES)
|
||||
/* Start of the emulated eeprom write log */
|
||||
#define FEE_WRITE_LOG_BASE_ADDRESS FEE_PAGE_LAST_ADDRESS
|
||||
/* End of the emulated eeprom write log */
|
||||
#define FEE_WRITE_LOG_LAST_ADDRESS (FEE_WRITE_LOG_BASE_ADDRESS + FEE_WRITE_LOG_BYTES)
|
||||
|
||||
/* Flash word value after erase */
|
||||
#define FEE_EMPTY_WORD ((uint16_t)0xFFFF)
|
||||
|
||||
#if defined(DYNAMIC_KEYMAP_EEPROM_MAX_ADDR) && (DYNAMIC_KEYMAP_EEPROM_MAX_ADDR >= FEE_DENSITY_BYTES)
|
||||
# error emulated eeprom: DYNAMIC_KEYMAP_EEPROM_MAX_ADDR is greater than the FEE_DENSITY_BYTES available
|
||||
#endif
|
||||
|
||||
/* In-memory contents of emulated eeprom for faster access */
|
||||
/* *TODO: Implement page swapping */
|
||||
static uint16_t WordBuf[FEE_DENSITY_BYTES / 2];
|
||||
static uint8_t *DataBuf = (uint8_t *)WordBuf;
|
||||
|
||||
/* Pointer to the first available slot within the write log */
|
||||
static uint16_t *empty_slot;
|
||||
|
||||
// #define DEBUG_EEPROM_OUTPUT
|
||||
|
||||
/*
|
||||
* Debug print utils
|
||||
*/
|
||||
|
||||
#if defined(DEBUG_EEPROM_OUTPUT)
|
||||
|
||||
# define debug_eeprom debug_enable
|
||||
# define eeprom_println(s) println(s)
|
||||
# define eeprom_printf(fmt, ...) xprintf(fmt, ##__VA_ARGS__);
|
||||
|
||||
#else /* NO_DEBUG */
|
||||
|
||||
# define debug_eeprom false
|
||||
# define eeprom_println(s)
|
||||
# define eeprom_printf(fmt, ...)
|
||||
|
||||
#endif /* NO_DEBUG */
|
||||
|
||||
void print_eeprom(void) {
|
||||
#ifndef NO_DEBUG
|
||||
int empty_rows = 0;
|
||||
for (uint16_t i = 0; i < FEE_DENSITY_BYTES; i++) {
|
||||
if (i % 16 == 0) {
|
||||
if (i >= FEE_DENSITY_BYTES - 16) {
|
||||
/* Make sure we display the last row */
|
||||
empty_rows = 0;
|
||||
}
|
||||
/* Check if this row is uninitialized */
|
||||
++empty_rows;
|
||||
for (uint16_t j = 0; j < 16; j++) {
|
||||
if (DataBuf[i + j]) {
|
||||
empty_rows = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (empty_rows > 1) {
|
||||
/* Repeat empty row */
|
||||
if (empty_rows == 2) {
|
||||
/* Only display the first repeat empty row */
|
||||
println("*");
|
||||
}
|
||||
i += 15;
|
||||
continue;
|
||||
}
|
||||
xprintf("%04x", i);
|
||||
}
|
||||
if (i % 8 == 0) print(" ");
|
||||
|
||||
xprintf(" %02x", DataBuf[i]);
|
||||
if ((i + 1) % 16 == 0) {
|
||||
println("");
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
uint8_t DataBuf[FEE_PAGE_SIZE];
|
||||
/*****************************************************************************
|
||||
* Delete Flash Space used for user Data, deletes the whole space between
|
||||
* RW_PAGE_BASE_ADDRESS and the last uC Flash Page
|
||||
******************************************************************************/
|
||||
uint16_t EEPROM_Init(void) {
|
||||
// unlock flash
|
||||
FLASH_Unlock();
|
||||
|
||||
// Clear Flags
|
||||
// FLASH_ClearFlag(FLASH_SR_EOP|FLASH_SR_PGERR|FLASH_SR_WRPERR);
|
||||
|
||||
return FEE_DENSITY_BYTES;
|
||||
}
|
||||
/*****************************************************************************
|
||||
* Erase the whole reserved Flash Space used for user Data
|
||||
******************************************************************************/
|
||||
void EEPROM_Erase(void) {
|
||||
int page_num = 0;
|
||||
|
||||
// delete all pages from specified start page to the last page
|
||||
do {
|
||||
FLASH_ErasePage(FEE_PAGE_BASE_ADDRESS + (page_num * FEE_PAGE_SIZE));
|
||||
page_num++;
|
||||
} while (page_num < FEE_DENSITY_PAGES);
|
||||
}
|
||||
/*****************************************************************************
|
||||
* Writes once data byte to flash on specified address. If a byte is already
|
||||
* written, the whole page must be copied to a buffer, the byte changed and
|
||||
* the manipulated buffer written after PageErase.
|
||||
*******************************************************************************/
|
||||
uint16_t EEPROM_WriteDataByte(uint16_t Address, uint8_t DataByte) {
|
||||
FLASH_Status FlashStatus = FLASH_COMPLETE;
|
||||
|
||||
uint32_t page;
|
||||
int i;
|
||||
|
||||
// exit if desired address is above the limit (e.G. under 2048 Bytes for 4 pages)
|
||||
if (Address > FEE_DENSITY_BYTES) {
|
||||
return 0;
|
||||
/* Load emulated eeprom contents from compacted flash into memory */
|
||||
uint16_t *src = (uint16_t *)FEE_PAGE_BASE_ADDRESS;
|
||||
uint16_t *dest = (uint16_t *)DataBuf;
|
||||
for (; src < (uint16_t *)FEE_PAGE_LAST_ADDRESS; ++src, ++dest) {
|
||||
*dest = ~*src;
|
||||
}
|
||||
|
||||
// calculate which page is affected (Pagenum1/Pagenum2...PagenumN)
|
||||
page = FEE_ADDR_OFFSET(Address) / FEE_PAGE_SIZE;
|
||||
if (debug_eeprom) {
|
||||
println("EEPROM_Init Compacted Pages:");
|
||||
print_eeprom();
|
||||
println("EEPROM_Init Write Log:");
|
||||
}
|
||||
|
||||
// if current data is 0xFF, the byte is empty, just overwrite with the new one
|
||||
if ((*(__IO uint16_t *)(FEE_PAGE_BASE_ADDRESS + FEE_ADDR_OFFSET(Address))) == FEE_EMPTY_WORD) {
|
||||
FlashStatus = FLASH_ProgramHalfWord(FEE_PAGE_BASE_ADDRESS + FEE_ADDR_OFFSET(Address), (uint16_t)(0x00FF & DataByte));
|
||||
} else {
|
||||
// Copy Page to a buffer
|
||||
memcpy(DataBuf, (uint8_t *)FEE_PAGE_BASE_ADDRESS + (page * FEE_PAGE_SIZE), FEE_PAGE_SIZE); // !!! Calculate base address for the desired page
|
||||
|
||||
// check if new data is differ to current data, return if not, proceed if yes
|
||||
if (DataByte == *(__IO uint8_t *)(FEE_PAGE_BASE_ADDRESS + FEE_ADDR_OFFSET(Address))) {
|
||||
return 0;
|
||||
/* Replay write log */
|
||||
uint16_t *log_addr;
|
||||
for (log_addr = (uint16_t *)FEE_WRITE_LOG_BASE_ADDRESS; log_addr < (uint16_t *)FEE_WRITE_LOG_LAST_ADDRESS; ++log_addr) {
|
||||
uint16_t address = *log_addr;
|
||||
if (address == FEE_EMPTY_WORD) {
|
||||
break;
|
||||
}
|
||||
|
||||
// manipulate desired data byte in temp data array if new byte is differ to the current
|
||||
DataBuf[FEE_ADDR_OFFSET(Address) % FEE_PAGE_SIZE] = DataByte;
|
||||
|
||||
// Erase Page
|
||||
FlashStatus = FLASH_ErasePage(FEE_PAGE_BASE_ADDRESS + (page * FEE_PAGE_SIZE));
|
||||
|
||||
// Write new data (whole page) to flash if data has been changed
|
||||
for (i = 0; i < (FEE_PAGE_SIZE / 2); i++) {
|
||||
if ((__IO uint16_t)(0xFF00 | DataBuf[FEE_ADDR_OFFSET(i)]) != 0xFFFF) {
|
||||
FlashStatus = FLASH_ProgramHalfWord((FEE_PAGE_BASE_ADDRESS + (page * FEE_PAGE_SIZE)) + (i * 2), (uint16_t)(0xFF00 | DataBuf[FEE_ADDR_OFFSET(i)]));
|
||||
/* Check for lowest 128-bytes optimization */
|
||||
if (!(address & FEE_WORD_ENCODING)) {
|
||||
uint8_t bvalue = (uint8_t)address;
|
||||
address >>= 8;
|
||||
DataBuf[address] = bvalue;
|
||||
eeprom_printf("DataBuf[0x%02x] = 0x%02x;\n", address, bvalue);
|
||||
} else {
|
||||
uint16_t wvalue;
|
||||
/* Check if value is in next word */
|
||||
if ((address & FEE_VALUE_NEXT) == FEE_VALUE_NEXT) {
|
||||
/* Read value from next word */
|
||||
if (++log_addr >= (uint16_t *)FEE_WRITE_LOG_LAST_ADDRESS) {
|
||||
break;
|
||||
}
|
||||
wvalue = ~*log_addr;
|
||||
if (!wvalue) {
|
||||
eeprom_printf("Incomplete write at log_addr: 0x%04x;\n", (uint32_t)log_addr);
|
||||
/* Possibly incomplete write. Ignore and continue */
|
||||
continue;
|
||||
}
|
||||
address &= 0x1FFF;
|
||||
address <<= 1;
|
||||
/* Writes to addresses less than 128 are byte log entries */
|
||||
address += FEE_BYTE_RANGE;
|
||||
} else {
|
||||
/* Reserved for future use */
|
||||
if (address & FEE_VALUE_RESERVED) {
|
||||
eeprom_printf("Reserved encoded value at log_addr: 0x%04x;\n", (uint32_t)log_addr);
|
||||
continue;
|
||||
}
|
||||
/* Optimization for 0 or 1 values. */
|
||||
wvalue = (address & FEE_VALUE_ENCODED) >> 13;
|
||||
address &= 0x1FFF;
|
||||
address <<= 1;
|
||||
}
|
||||
if (address < FEE_DENSITY_BYTES) {
|
||||
eeprom_printf("DataBuf[0x%04x] = 0x%04x;\n", address, wvalue);
|
||||
*(uint16_t *)(&DataBuf[address]) = wvalue;
|
||||
} else {
|
||||
eeprom_printf("DataBuf[0x%04x] cannot be set to 0x%04x [BAD ADDRESS]\n", address, wvalue);
|
||||
}
|
||||
}
|
||||
}
|
||||
return FlashStatus;
|
||||
|
||||
empty_slot = log_addr;
|
||||
|
||||
if (debug_eeprom) {
|
||||
println("EEPROM_Init Final DataBuf:");
|
||||
print_eeprom();
|
||||
}
|
||||
|
||||
return FEE_DENSITY_BYTES;
|
||||
}
|
||||
/*****************************************************************************
|
||||
* Read once data byte from a specified address.
|
||||
*******************************************************************************/
|
||||
|
||||
/* Clear flash contents (doesn't touch in-memory DataBuf) */
|
||||
static void eeprom_clear(void) {
|
||||
FLASH_Unlock();
|
||||
|
||||
for (uint16_t page_num = 0; page_num < FEE_DENSITY_PAGES; ++page_num) {
|
||||
eeprom_printf("FLASH_ErasePage(0x%04x)\n", (uint32_t)(FEE_PAGE_BASE_ADDRESS + (page_num * FEE_PAGE_SIZE)));
|
||||
FLASH_ErasePage(FEE_PAGE_BASE_ADDRESS + (page_num * FEE_PAGE_SIZE));
|
||||
}
|
||||
|
||||
FLASH_Lock();
|
||||
|
||||
empty_slot = (uint16_t *)FEE_WRITE_LOG_BASE_ADDRESS;
|
||||
eeprom_printf("eeprom_clear empty_slot: 0x%08x\n", (uint32_t)empty_slot);
|
||||
}
|
||||
|
||||
/* Erase emulated eeprom */
|
||||
void EEPROM_Erase(void) {
|
||||
eeprom_println("EEPROM_Erase");
|
||||
/* Erase compacted pages and write log */
|
||||
eeprom_clear();
|
||||
/* re-initialize to reset DataBuf */
|
||||
EEPROM_Init();
|
||||
}
|
||||
|
||||
/* Compact write log */
|
||||
static uint8_t eeprom_compact(void) {
|
||||
/* Erase compacted pages and write log */
|
||||
eeprom_clear();
|
||||
|
||||
FLASH_Unlock();
|
||||
|
||||
FLASH_Status final_status = FLASH_COMPLETE;
|
||||
|
||||
/* Write emulated eeprom contents from memory to compacted flash */
|
||||
uint16_t *src = (uint16_t *)DataBuf;
|
||||
uintptr_t dest = FEE_PAGE_BASE_ADDRESS;
|
||||
uint16_t value;
|
||||
for (; dest < FEE_PAGE_LAST_ADDRESS; ++src, dest += 2) {
|
||||
value = *src;
|
||||
if (value) {
|
||||
eeprom_printf("FLASH_ProgramHalfWord(0x%04x, 0x%04x)\n", (uint32_t)dest, ~value);
|
||||
FLASH_Status status = FLASH_ProgramHalfWord(dest, ~value);
|
||||
if (status != FLASH_COMPLETE) final_status = status;
|
||||
}
|
||||
}
|
||||
|
||||
FLASH_Lock();
|
||||
|
||||
if (debug_eeprom) {
|
||||
println("eeprom_compacted:");
|
||||
print_eeprom();
|
||||
}
|
||||
|
||||
return final_status;
|
||||
}
|
||||
|
||||
static uint8_t eeprom_write_direct_entry(uint16_t Address) {
|
||||
/* Check if we can just write this directly to the compacted flash area */
|
||||
uintptr_t directAddress = FEE_PAGE_BASE_ADDRESS + (Address & 0xFFFE);
|
||||
if (*(uint16_t *)directAddress == FEE_EMPTY_WORD) {
|
||||
/* Write the value directly to the compacted area without a log entry */
|
||||
uint16_t value = ~*(uint16_t *)(&DataBuf[Address & 0xFFFE]);
|
||||
/* Early exit if a write isn't needed */
|
||||
if (value == FEE_EMPTY_WORD) return FLASH_COMPLETE;
|
||||
|
||||
FLASH_Unlock();
|
||||
|
||||
eeprom_printf("FLASH_ProgramHalfWord(0x%08x, 0x%04x) [DIRECT]\n", (uint32_t)directAddress, value);
|
||||
FLASH_Status status = FLASH_ProgramHalfWord(directAddress, value);
|
||||
|
||||
FLASH_Lock();
|
||||
return status;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static uint8_t eeprom_write_log_word_entry(uint16_t Address) {
|
||||
FLASH_Status final_status = FLASH_COMPLETE;
|
||||
|
||||
uint16_t value = *(uint16_t *)(&DataBuf[Address]);
|
||||
eeprom_printf("eeprom_write_log_word_entry(0x%04x): 0x%04x\n", Address, value);
|
||||
|
||||
/* MSB signifies the lowest 128-byte optimization is not in effect */
|
||||
uint16_t encoding = FEE_WORD_ENCODING;
|
||||
uint8_t entry_size;
|
||||
if (value <= 1) {
|
||||
encoding |= value << 13;
|
||||
entry_size = 2;
|
||||
} else {
|
||||
encoding |= FEE_VALUE_NEXT;
|
||||
entry_size = 4;
|
||||
/* Writes to addresses less than 128 are byte log entries */
|
||||
Address -= FEE_BYTE_RANGE;
|
||||
}
|
||||
|
||||
/* if we can't find an empty spot, we must compact emulated eeprom */
|
||||
if (empty_slot > (uint16_t *)(FEE_WRITE_LOG_LAST_ADDRESS - entry_size)) {
|
||||
/* compact the write log into the compacted flash area */
|
||||
return eeprom_compact();
|
||||
}
|
||||
|
||||
/* Word log writes should be word-aligned. Take back a bit */
|
||||
Address >>= 1;
|
||||
Address |= encoding;
|
||||
|
||||
/* ok we found a place let's write our data */
|
||||
FLASH_Unlock();
|
||||
|
||||
/* address */
|
||||
eeprom_printf("FLASH_ProgramHalfWord(0x%08x, 0x%04x)\n", (uint32_t)empty_slot, Address);
|
||||
final_status = FLASH_ProgramHalfWord((uintptr_t)empty_slot++, Address);
|
||||
|
||||
/* value */
|
||||
if (encoding == (FEE_WORD_ENCODING | FEE_VALUE_NEXT)) {
|
||||
eeprom_printf("FLASH_ProgramHalfWord(0x%08x, 0x%04x)\n", (uint32_t)empty_slot, ~value);
|
||||
FLASH_Status status = FLASH_ProgramHalfWord((uintptr_t)empty_slot++, ~value);
|
||||
if (status != FLASH_COMPLETE) final_status = status;
|
||||
}
|
||||
|
||||
FLASH_Lock();
|
||||
|
||||
return final_status;
|
||||
}
|
||||
|
||||
static uint8_t eeprom_write_log_byte_entry(uint16_t Address) {
|
||||
eeprom_printf("eeprom_write_log_byte_entry(0x%04x): 0x%02x\n", Address, DataBuf[Address]);
|
||||
|
||||
/* if couldn't find an empty spot, we must compact emulated eeprom */
|
||||
if (empty_slot >= (uint16_t *)FEE_WRITE_LOG_LAST_ADDRESS) {
|
||||
/* compact the write log into the compacted flash area */
|
||||
return eeprom_compact();
|
||||
}
|
||||
|
||||
/* ok we found a place let's write our data */
|
||||
FLASH_Unlock();
|
||||
|
||||
/* Pack address and value into the same word */
|
||||
uint16_t value = (Address << 8) | DataBuf[Address];
|
||||
|
||||
/* write to flash */
|
||||
eeprom_printf("FLASH_ProgramHalfWord(0x%08x, 0x%04x)\n", (uint32_t)empty_slot, value);
|
||||
FLASH_Status status = FLASH_ProgramHalfWord((uintptr_t)empty_slot++, value);
|
||||
|
||||
FLASH_Lock();
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
uint8_t EEPROM_WriteDataByte(uint16_t Address, uint8_t DataByte) {
|
||||
/* if the address is out-of-bounds, do nothing */
|
||||
if (Address >= FEE_DENSITY_BYTES) {
|
||||
eeprom_printf("EEPROM_WriteDataByte(0x%04x, 0x%02x) [BAD ADDRESS]\n", Address, DataByte);
|
||||
return FLASH_BAD_ADDRESS;
|
||||
}
|
||||
|
||||
/* if the value is the same, don't bother writing it */
|
||||
if (DataBuf[Address] == DataByte) {
|
||||
eeprom_printf("EEPROM_WriteDataByte(0x%04x, 0x%02x) [SKIP SAME]\n", Address, DataByte);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* keep DataBuf cache in sync */
|
||||
DataBuf[Address] = DataByte;
|
||||
eeprom_printf("EEPROM_WriteDataByte DataBuf[0x%04x] = 0x%02x\n", Address, DataBuf[Address]);
|
||||
|
||||
/* perform the write into flash memory */
|
||||
/* First, attempt to write directly into the compacted flash area */
|
||||
FLASH_Status status = eeprom_write_direct_entry(Address);
|
||||
if (!status) {
|
||||
/* Otherwise append to the write log */
|
||||
if (Address < FEE_BYTE_RANGE) {
|
||||
status = eeprom_write_log_byte_entry(Address);
|
||||
} else {
|
||||
status = eeprom_write_log_word_entry(Address & 0xFFFE);
|
||||
}
|
||||
}
|
||||
if (status != 0 && status != FLASH_COMPLETE) {
|
||||
eeprom_printf("EEPROM_WriteDataByte [STATUS == %d]\n", status);
|
||||
}
|
||||
return status;
|
||||
}
|
||||
|
||||
uint8_t EEPROM_WriteDataWord(uint16_t Address, uint16_t DataWord) {
|
||||
/* if the address is out-of-bounds, do nothing */
|
||||
if (Address >= FEE_DENSITY_BYTES) {
|
||||
eeprom_printf("EEPROM_WriteDataWord(0x%04x, 0x%04x) [BAD ADDRESS]\n", Address, DataWord);
|
||||
return FLASH_BAD_ADDRESS;
|
||||
}
|
||||
|
||||
/* Check for word alignment */
|
||||
FLASH_Status final_status = FLASH_COMPLETE;
|
||||
if (Address % 2) {
|
||||
final_status = EEPROM_WriteDataByte(Address, DataWord);
|
||||
FLASH_Status status = EEPROM_WriteDataByte(Address + 1, DataWord >> 8);
|
||||
if (status != FLASH_COMPLETE) final_status = status;
|
||||
if (final_status != 0 && final_status != FLASH_COMPLETE) {
|
||||
eeprom_printf("EEPROM_WriteDataWord [STATUS == %d]\n", final_status);
|
||||
}
|
||||
return final_status;
|
||||
}
|
||||
|
||||
/* if the value is the same, don't bother writing it */
|
||||
uint16_t oldValue = *(uint16_t *)(&DataBuf[Address]);
|
||||
if (oldValue == DataWord) {
|
||||
eeprom_printf("EEPROM_WriteDataWord(0x%04x, 0x%04x) [SKIP SAME]\n", Address, DataWord);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* keep DataBuf cache in sync */
|
||||
*(uint16_t *)(&DataBuf[Address]) = DataWord;
|
||||
eeprom_printf("EEPROM_WriteDataWord DataBuf[0x%04x] = 0x%04x\n", Address, *(uint16_t *)(&DataBuf[Address]));
|
||||
|
||||
/* perform the write into flash memory */
|
||||
/* First, attempt to write directly into the compacted flash area */
|
||||
final_status = eeprom_write_direct_entry(Address);
|
||||
if (!final_status) {
|
||||
/* Otherwise append to the write log */
|
||||
/* Check if we need to fall back to byte write */
|
||||
if (Address < FEE_BYTE_RANGE) {
|
||||
final_status = FLASH_COMPLETE;
|
||||
/* Only write a byte if it has changed */
|
||||
if ((uint8_t)oldValue != (uint8_t)DataWord) {
|
||||
final_status = eeprom_write_log_byte_entry(Address);
|
||||
}
|
||||
FLASH_Status status = FLASH_COMPLETE;
|
||||
/* Only write a byte if it has changed */
|
||||
if ((oldValue >> 8) != (DataWord >> 8)) {
|
||||
status = eeprom_write_log_byte_entry(Address + 1);
|
||||
}
|
||||
if (status != FLASH_COMPLETE) final_status = status;
|
||||
} else {
|
||||
final_status = eeprom_write_log_word_entry(Address);
|
||||
}
|
||||
}
|
||||
if (final_status != 0 && final_status != FLASH_COMPLETE) {
|
||||
eeprom_printf("EEPROM_WriteDataWord [STATUS == %d]\n", final_status);
|
||||
}
|
||||
return final_status;
|
||||
}
|
||||
|
||||
uint8_t EEPROM_ReadDataByte(uint16_t Address) {
|
||||
uint8_t DataByte = 0xFF;
|
||||
|
||||
// Get Byte from specified address
|
||||
DataByte = (*(__IO uint8_t *)(FEE_PAGE_BASE_ADDRESS + FEE_ADDR_OFFSET(Address)));
|
||||
if (Address < FEE_DENSITY_BYTES) {
|
||||
DataByte = DataBuf[Address];
|
||||
}
|
||||
|
||||
eeprom_printf("EEPROM_ReadDataByte(0x%04x): 0x%02x\n", Address, DataByte);
|
||||
|
||||
return DataByte;
|
||||
}
|
||||
|
||||
uint16_t EEPROM_ReadDataWord(uint16_t Address) {
|
||||
uint16_t DataWord = 0xFFFF;
|
||||
|
||||
if (Address < FEE_DENSITY_BYTES - 1) {
|
||||
/* Check word alignment */
|
||||
if (Address % 2) {
|
||||
DataWord = DataBuf[Address] | (DataBuf[Address + 1] << 8);
|
||||
} else {
|
||||
DataWord = *(uint16_t *)(&DataBuf[Address]);
|
||||
}
|
||||
}
|
||||
|
||||
eeprom_printf("EEPROM_ReadDataWord(0x%04x): 0x%04x\n", Address, DataWord);
|
||||
|
||||
return DataWord;
|
||||
}
|
||||
|
||||
/*****************************************************************************
|
||||
* Wrap library in AVR style functions.
|
||||
*******************************************************************************/
|
||||
uint8_t eeprom_read_byte(const uint8_t *Address) {
|
||||
const uint16_t p = (const uint32_t)Address;
|
||||
return EEPROM_ReadDataByte(p);
|
||||
}
|
||||
uint8_t eeprom_read_byte(const uint8_t *Address) { return EEPROM_ReadDataByte((const uintptr_t)Address); }
|
||||
|
||||
void eeprom_write_byte(uint8_t *Address, uint8_t Value) {
|
||||
uint16_t p = (uint32_t)Address;
|
||||
EEPROM_WriteDataByte(p, Value);
|
||||
}
|
||||
void eeprom_write_byte(uint8_t *Address, uint8_t Value) { EEPROM_WriteDataByte((uintptr_t)Address, Value); }
|
||||
|
||||
void eeprom_update_byte(uint8_t *Address, uint8_t Value) {
|
||||
uint16_t p = (uint32_t)Address;
|
||||
EEPROM_WriteDataByte(p, Value);
|
||||
}
|
||||
void eeprom_update_byte(uint8_t *Address, uint8_t Value) { EEPROM_WriteDataByte((uintptr_t)Address, Value); }
|
||||
|
||||
uint16_t eeprom_read_word(const uint16_t *Address) {
|
||||
const uint16_t p = (const uint32_t)Address;
|
||||
return EEPROM_ReadDataByte(p) | (EEPROM_ReadDataByte(p + 1) << 8);
|
||||
}
|
||||
uint16_t eeprom_read_word(const uint16_t *Address) { return EEPROM_ReadDataWord((const uintptr_t)Address); }
|
||||
|
||||
void eeprom_write_word(uint16_t *Address, uint16_t Value) {
|
||||
uint16_t p = (uint32_t)Address;
|
||||
EEPROM_WriteDataByte(p, (uint8_t)Value);
|
||||
EEPROM_WriteDataByte(p + 1, (uint8_t)(Value >> 8));
|
||||
}
|
||||
void eeprom_write_word(uint16_t *Address, uint16_t Value) { EEPROM_WriteDataWord((uintptr_t)Address, Value); }
|
||||
|
||||
void eeprom_update_word(uint16_t *Address, uint16_t Value) {
|
||||
uint16_t p = (uint32_t)Address;
|
||||
EEPROM_WriteDataByte(p, (uint8_t)Value);
|
||||
EEPROM_WriteDataByte(p + 1, (uint8_t)(Value >> 8));
|
||||
}
|
||||
void eeprom_update_word(uint16_t *Address, uint16_t Value) { EEPROM_WriteDataWord((uintptr_t)Address, Value); }
|
||||
|
||||
uint32_t eeprom_read_dword(const uint32_t *Address) {
|
||||
const uint16_t p = (const uint32_t)Address;
|
||||
return EEPROM_ReadDataByte(p) | (EEPROM_ReadDataByte(p + 1) << 8) | (EEPROM_ReadDataByte(p + 2) << 16) | (EEPROM_ReadDataByte(p + 3) << 24);
|
||||
}
|
||||
|
||||
void eeprom_write_dword(uint32_t *Address, uint32_t Value) {
|
||||
uint16_t p = (const uint32_t)Address;
|
||||
EEPROM_WriteDataByte(p, (uint8_t)Value);
|
||||
EEPROM_WriteDataByte(p + 1, (uint8_t)(Value >> 8));
|
||||
EEPROM_WriteDataByte(p + 2, (uint8_t)(Value >> 16));
|
||||
EEPROM_WriteDataByte(p + 3, (uint8_t)(Value >> 24));
|
||||
}
|
||||
|
||||
void eeprom_update_dword(uint32_t *Address, uint32_t Value) {
|
||||
uint16_t p = (const uint32_t)Address;
|
||||
uint32_t existingValue = EEPROM_ReadDataByte(p) | (EEPROM_ReadDataByte(p + 1) << 8) | (EEPROM_ReadDataByte(p + 2) << 16) | (EEPROM_ReadDataByte(p + 3) << 24);
|
||||
if (Value != existingValue) {
|
||||
EEPROM_WriteDataByte(p, (uint8_t)Value);
|
||||
EEPROM_WriteDataByte(p + 1, (uint8_t)(Value >> 8));
|
||||
EEPROM_WriteDataByte(p + 2, (uint8_t)(Value >> 16));
|
||||
EEPROM_WriteDataByte(p + 3, (uint8_t)(Value >> 24));
|
||||
const uint16_t p = (const uintptr_t)Address;
|
||||
/* Check word alignment */
|
||||
if (p % 2) {
|
||||
/* Not aligned */
|
||||
return (uint32_t)EEPROM_ReadDataByte(p) | (uint32_t)(EEPROM_ReadDataWord(p + 1) << 8) | (uint32_t)(EEPROM_ReadDataByte(p + 3) << 24);
|
||||
} else {
|
||||
/* Aligned */
|
||||
return EEPROM_ReadDataWord(p) | (EEPROM_ReadDataWord(p + 2) << 16);
|
||||
}
|
||||
}
|
||||
|
||||
void eeprom_write_dword(uint32_t *Address, uint32_t Value) {
|
||||
uint16_t p = (const uintptr_t)Address;
|
||||
/* Check word alignment */
|
||||
if (p % 2) {
|
||||
/* Not aligned */
|
||||
EEPROM_WriteDataByte(p, (uint8_t)Value);
|
||||
EEPROM_WriteDataWord(p + 1, (uint16_t)(Value >> 8));
|
||||
EEPROM_WriteDataByte(p + 3, (uint8_t)(Value >> 24));
|
||||
} else {
|
||||
/* Aligned */
|
||||
EEPROM_WriteDataWord(p, (uint16_t)Value);
|
||||
EEPROM_WriteDataWord(p + 2, (uint16_t)(Value >> 16));
|
||||
}
|
||||
}
|
||||
|
||||
void eeprom_update_dword(uint32_t *Address, uint32_t Value) { eeprom_write_dword(Address, Value); }
|
||||
|
||||
void eeprom_read_block(void *buf, const void *addr, size_t len) {
|
||||
const uint8_t *p = (const uint8_t *)addr;
|
||||
const uint8_t *src = (const uint8_t *)addr;
|
||||
uint8_t * dest = (uint8_t *)buf;
|
||||
while (len--) {
|
||||
*dest++ = eeprom_read_byte(p++);
|
||||
|
||||
/* Check word alignment */
|
||||
if (len && (uintptr_t)src % 2) {
|
||||
/* Read the unaligned first byte */
|
||||
*dest++ = eeprom_read_byte(src++);
|
||||
--len;
|
||||
}
|
||||
|
||||
uint16_t value;
|
||||
bool aligned = ((uintptr_t)dest % 2 == 0);
|
||||
while (len > 1) {
|
||||
value = eeprom_read_word((uint16_t *)src);
|
||||
if (aligned) {
|
||||
*(uint16_t *)dest = value;
|
||||
dest += 2;
|
||||
} else {
|
||||
*dest++ = value;
|
||||
*dest++ = value >> 8;
|
||||
}
|
||||
src += 2;
|
||||
len -= 2;
|
||||
}
|
||||
if (len) {
|
||||
*dest = eeprom_read_byte(src);
|
||||
}
|
||||
}
|
||||
|
||||
void eeprom_write_block(const void *buf, void *addr, size_t len) {
|
||||
uint8_t * p = (uint8_t *)addr;
|
||||
const uint8_t *src = (const uint8_t *)buf;
|
||||
while (len--) {
|
||||
eeprom_write_byte(p++, *src++);
|
||||
uint8_t * dest = (uint8_t *)addr;
|
||||
const uint8_t *src = (const uint8_t *)buf;
|
||||
|
||||
/* Check word alignment */
|
||||
if (len && (uintptr_t)dest % 2) {
|
||||
/* Write the unaligned first byte */
|
||||
eeprom_write_byte(dest++, *src++);
|
||||
--len;
|
||||
}
|
||||
|
||||
uint16_t value;
|
||||
bool aligned = ((uintptr_t)src % 2 == 0);
|
||||
while (len > 1) {
|
||||
if (aligned) {
|
||||
value = *(uint16_t *)src;
|
||||
} else {
|
||||
value = *(uint8_t *)src | (*(uint8_t *)(src + 1) << 8);
|
||||
}
|
||||
eeprom_write_word((uint16_t *)dest, value);
|
||||
dest += 2;
|
||||
src += 2;
|
||||
len -= 2;
|
||||
}
|
||||
|
||||
if (len) {
|
||||
eeprom_write_byte(dest, *src);
|
||||
}
|
||||
}
|
||||
|
||||
void eeprom_update_block(const void *buf, void *addr, size_t len) {
|
||||
uint8_t * p = (uint8_t *)addr;
|
||||
const uint8_t *src = (const uint8_t *)buf;
|
||||
while (len--) {
|
||||
eeprom_write_byte(p++, *src++);
|
||||
}
|
||||
}
|
||||
void eeprom_update_block(const void *buf, void *addr, size_t len) { eeprom_write_block(buf, addr, len); }
|
||||
|
Reference in New Issue
Block a user