#include #include #include "keyboard.h" #include "action.h" #include "encoder.h" #include "util.h" #include "action_layer.h" #ifdef VIAL_ENABLE #include "vial.h" #endif /** \brief Default Layer State */ layer_state_t default_layer_state = 0; /** \brief Default Layer State Set At user Level * * Run user code on default layer state change */ __attribute__((weak)) layer_state_t default_layer_state_set_user(layer_state_t state) { return state; } /** \brief Default Layer State Set At Keyboard Level * * Run keyboard code on default layer state change */ __attribute__((weak)) layer_state_t default_layer_state_set_kb(layer_state_t state) { return default_layer_state_set_user(state); } /** \brief Default Layer State Set * * Static function to set the default layer state, prints debug info and clears keys */ static void default_layer_state_set(layer_state_t state) { state = default_layer_state_set_kb(state); ac_dprintf("default_layer_state: "); default_layer_debug(); ac_dprintf(" to "); default_layer_state = state; default_layer_debug(); ac_dprintf("\n"); #if defined(STRICT_LAYER_RELEASE) clear_keyboard_but_mods(); // To avoid stuck keys #elif defined(SEMI_STRICT_LAYER_RELEASE) clear_keyboard_but_mods_and_keys(); // Don't reset held keys #endif } /** \brief Default Layer Print * * Print out the hex value of the 32-bit default layer state, as well as the value of the highest bit. */ void default_layer_debug(void) { ac_dprintf("%08hX(%u)", default_layer_state, get_highest_layer(default_layer_state)); } /** \brief Default Layer Set * * Sets the default layer state. */ void default_layer_set(layer_state_t state) { default_layer_state_set(state); } #ifndef NO_ACTION_LAYER /** \brief Default Layer Or * * Turns on the default layer based on matching bits between specified layer and existing layer state */ void default_layer_or(layer_state_t state) { default_layer_state_set(default_layer_state | state); } /** \brief Default Layer And * * Turns on default layer based on matching enabled bits between specified layer and existing layer state */ void default_layer_and(layer_state_t state) { default_layer_state_set(default_layer_state & state); } /** \brief Default Layer Xor * * Turns on default layer based on non-matching bits between specified layer and existing layer state */ void default_layer_xor(layer_state_t state) { default_layer_state_set(default_layer_state ^ state); } #endif #ifndef NO_ACTION_LAYER /** \brief Keymap Layer State */ layer_state_t layer_state = 0; /** \brief Layer state set user * * Runs user code on layer state change */ __attribute__((weak)) layer_state_t layer_state_set_user(layer_state_t state) { return state; } /** \brief Layer state set keyboard * * Runs keyboard code on layer state change */ __attribute__((weak)) layer_state_t layer_state_set_kb(layer_state_t state) { return layer_state_set_user(state); } /** \brief Layer state set * * Sets the layer to match the specified state (a bitmask) */ void layer_state_set(layer_state_t state) { state = layer_state_set_kb(state); ac_dprintf("layer_state: "); layer_debug(); ac_dprintf(" to "); layer_state = state; layer_debug(); ac_dprintf("\n"); # if defined(STRICT_LAYER_RELEASE) clear_keyboard_but_mods(); // To avoid stuck keys # elif defined(SEMI_STRICT_LAYER_RELEASE) clear_keyboard_but_mods_and_keys(); // Don't reset held keys # endif } /** \brief Layer clear * * Turn off all layers */ void layer_clear(void) { layer_state_set(0); } /** \brief Layer state is * * Return whether the given state is on (it might still be shadowed by a higher state, though) */ bool layer_state_is(uint8_t layer) { return layer_state_cmp(layer_state, layer); } /** \brief Layer state compare * * Used for comparing layers {mostly used for unit testing} */ bool layer_state_cmp(layer_state_t cmp_layer_state, uint8_t layer) { if (!cmp_layer_state) { return layer == 0; } return (cmp_layer_state & ((layer_state_t)1 << layer)) != 0; } /** \brief Layer move * * Turns on the given layer and turn off all other layers */ void layer_move(uint8_t layer) { layer_state_set((layer_state_t)1 << layer); } /** \brief Layer on * * Turns on given layer */ void layer_on(uint8_t layer) { layer_state_set(layer_state | ((layer_state_t)1 << layer)); } /** \brief Layer off * * Turns off given layer */ void layer_off(uint8_t layer) { layer_state_set(layer_state & ~((layer_state_t)1 << layer)); } /** \brief Layer invert * * Toggle the given layer (set it if it's unset, or unset it if it's set) */ void layer_invert(uint8_t layer) { layer_state_set(layer_state ^ ((layer_state_t)1 << layer)); } /** \brief Layer or * * Turns on layers based on matching bits between specified layer and existing layer state */ void layer_or(layer_state_t state) { layer_state_set(layer_state | state); } /** \brief Layer and * * Turns on layers based on matching enabled bits between specified layer and existing layer state */ void layer_and(layer_state_t state) { layer_state_set(layer_state & state); } /** \brief Layer xor * * Turns on layers based on non-matching bits between specified layer and existing layer state */ void layer_xor(layer_state_t state) { layer_state_set(layer_state ^ state); } /** \brief Layer debug printing * * Print out the hex value of the 32-bit layer state, as well as the value of the highest bit. */ void layer_debug(void) { ac_dprintf("%08hX(%u)", layer_state, get_highest_layer(layer_state)); } #endif #if !defined(NO_ACTION_LAYER) && !defined(STRICT_LAYER_RELEASE) /** \brief source layer cache */ uint8_t source_layers_cache[((MATRIX_ROWS * MATRIX_COLS) + (CHAR_BIT)-1) / (CHAR_BIT)][MAX_LAYER_BITS] = {{0}}; # ifdef ENCODER_MAP_ENABLE uint8_t encoder_source_layers_cache[(NUM_ENCODERS + (CHAR_BIT)-1) / (CHAR_BIT)][MAX_LAYER_BITS] = {{0}}; # endif // ENCODER_MAP_ENABLE /** \brief update source layers cache impl * * Updates the supplied cache when changing layers */ void update_source_layers_cache_impl(uint8_t layer, uint16_t entry_number, uint8_t cache[][MAX_LAYER_BITS]) { const uint16_t storage_idx = entry_number / (CHAR_BIT); const uint8_t storage_bit = entry_number % (CHAR_BIT); for (uint8_t bit_number = 0; bit_number < MAX_LAYER_BITS; bit_number++) { cache[storage_idx][bit_number] ^= (-((layer & (1U << bit_number)) != 0) ^ cache[storage_idx][bit_number]) & (1U << storage_bit); } } /** \brief read source layers cache * * reads the cached keys stored when the layer was changed */ uint8_t read_source_layers_cache_impl(uint16_t entry_number, uint8_t cache[][MAX_LAYER_BITS]) { const uint16_t storage_idx = entry_number / (CHAR_BIT); const uint8_t storage_bit = entry_number % (CHAR_BIT); uint8_t layer = 0; for (uint8_t bit_number = 0; bit_number < MAX_LAYER_BITS; bit_number++) { layer |= ((cache[storage_idx][bit_number] & (1U << storage_bit)) != 0) << bit_number; } return layer; } /** \brief update encoder source layers cache * * Updates the cached encoders when changing layers */ void update_source_layers_cache(keypos_t key, uint8_t layer) { #ifdef VIAL_ENABLE if (key.row == VIAL_MATRIX_MAGIC) return; #endif if (key.row < MATRIX_ROWS && key.col < MATRIX_COLS) { const uint16_t entry_number = (uint16_t)(key.row * MATRIX_COLS) + key.col; update_source_layers_cache_impl(layer, entry_number, source_layers_cache); } # ifdef ENCODER_MAP_ENABLE else if (key.row == KEYLOC_ENCODER_CW || key.row == KEYLOC_ENCODER_CCW) { const uint16_t entry_number = key.col; update_source_layers_cache_impl(layer, entry_number, encoder_source_layers_cache); } # endif // ENCODER_MAP_ENABLE } /** \brief read source layers cache * * reads the cached keys stored when the layer was changed */ uint8_t read_source_layers_cache(keypos_t key) { #ifdef VIAL_ENABLE if (key.row == VIAL_MATRIX_MAGIC) return 0; #endif if (key.row < MATRIX_ROWS && key.col < MATRIX_COLS) { const uint16_t entry_number = (uint16_t)(key.row * MATRIX_COLS) + key.col; return read_source_layers_cache_impl(entry_number, source_layers_cache); } # ifdef ENCODER_MAP_ENABLE else if (key.row == KEYLOC_ENCODER_CW || key.row == KEYLOC_ENCODER_CCW) { const uint16_t entry_number = key.col; return read_source_layers_cache_impl(entry_number, encoder_source_layers_cache); } # endif // ENCODER_MAP_ENABLE return 0; } #endif /** \brief Store or get action (FIXME: Needs better summary) * * Make sure the action triggered when the key is released is the same * one as the one triggered on press. It's important for the mod keys * when the layer is switched after the down event but before the up * event as they may get stuck otherwise. */ action_t store_or_get_action(bool pressed, keypos_t key) { #if !defined(NO_ACTION_LAYER) && !defined(STRICT_LAYER_RELEASE) if (disable_action_cache) { return layer_switch_get_action(key); } uint8_t layer; if (pressed) { layer = layer_switch_get_layer(key); update_source_layers_cache(key, layer); } else { layer = read_source_layers_cache(key); } return action_for_key(layer, key); #else return layer_switch_get_action(key); #endif } /** \brief Layer switch get layer * * Gets the layer based on key info */ uint8_t layer_switch_get_layer(keypos_t key) { #ifndef NO_ACTION_LAYER action_t action; action.code = ACTION_TRANSPARENT; layer_state_t layers = layer_state | default_layer_state; /* check top layer first */ for (int8_t i = MAX_LAYER - 1; i >= 0; i--) { if (layers & ((layer_state_t)1 << i)) { action = action_for_key(i, key); if (action.code != ACTION_TRANSPARENT) { return i; } } } /* fall back to layer 0 */ return 0; #else return get_highest_layer(default_layer_state); #endif } /** \brief Layer switch get layer * * Gets action code based on key position */ action_t layer_switch_get_action(keypos_t key) { return action_for_key(layer_switch_get_layer(key), key); } #ifndef NO_ACTION_LAYER layer_state_t update_tri_layer_state(layer_state_t state, uint8_t layer1, uint8_t layer2, uint8_t layer3) { layer_state_t mask12 = ((layer_state_t)1 << layer1) | ((layer_state_t)1 << layer2); layer_state_t mask3 = (layer_state_t)1 << layer3; return (state & mask12) == mask12 ? (state | mask3) : (state & ~mask3); } void update_tri_layer(uint8_t layer1, uint8_t layer2, uint8_t layer3) { layer_state_set(update_tri_layer_state(layer_state, layer1, layer2, layer3)); } #endif