/* Copyright 2018 Jason Williams (Wilba) * Copyright 2021 Doni Crosby * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "is31fl3736.h" #include "i2c_master.h" #include "wait.h" // This is a 7-bit address, that gets left-shifted and bit 0 // set to 0 for write, 1 for read (as per I2C protocol) // The address will vary depending on your wiring: // 00 <-> GND // 01 <-> SCL // 10 <-> SDA // 11 <-> VCC // ADDR1 represents A1:A0 of the 7-bit address. // ADDR2 represents A3:A2 of the 7-bit address. // The result is: 0b101(ADDR2)(ADDR1) #define ISSI_ADDR_DEFAULT 0x50 #define ISSI_COMMANDREGISTER 0xFD #define ISSI_COMMANDREGISTER_WRITELOCK 0xFE #define ISSI_INTERRUPTMASKREGISTER 0xF0 #define ISSI_INTERRUPTSTATUSREGISTER 0xF1 #define ISSI_PAGE_LEDCONTROL 0x00 // PG0 #define ISSI_PAGE_PWM 0x01 // PG1 #define ISSI_PAGE_AUTOBREATH 0x02 // PG2 #define ISSI_PAGE_FUNCTION 0x03 // PG3 #define ISSI_REG_CONFIGURATION 0x00 // PG3 #define ISSI_REG_GLOBALCURRENT 0x01 // PG3 #define ISSI_REG_RESET 0x11 // PG3 #define ISSI_REG_SWPULLUP 0x0F // PG3 #define ISSI_REG_CSPULLUP 0x10 // PG3 #ifndef ISSI_TIMEOUT # define ISSI_TIMEOUT 100 #endif #ifndef ISSI_PERSISTENCE # define ISSI_PERSISTENCE 0 #endif #ifndef ISSI_SWPULLUP # define ISSI_SWPULLUP PUR_0R #endif #ifndef ISSI_CSPULLUP # define ISSI_CSPULLUP PUR_0R #endif #ifndef ISSI_GLOBALCURRENT # define ISSI_GLOBALCURRENT 0xFF #endif // Transfer buffer for TWITransmitData() uint8_t g_twi_transfer_buffer[20]; // These buffers match the IS31FL3736 PWM registers. // The control buffers match the PG0 LED On/Off registers. // Storing them like this is optimal for I2C transfers to the registers. // We could optimize this and take out the unused registers from these // buffers and the transfers in IS31FL3736_write_pwm_buffer() but it's // probably not worth the extra complexity. uint8_t g_pwm_buffer[DRIVER_COUNT][192]; bool g_pwm_buffer_update_required = false; uint8_t g_led_control_registers[DRIVER_COUNT][24] = {{0}, {0}}; bool g_led_control_registers_update_required = false; void IS31FL3736_write_register(uint8_t addr, uint8_t reg, uint8_t data) { g_twi_transfer_buffer[0] = reg; g_twi_transfer_buffer[1] = data; #if ISSI_PERSISTENCE > 0 for (uint8_t i = 0; i < ISSI_PERSISTENCE; i++) { if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 2, ISSI_TIMEOUT) == 0) break; } #else i2c_transmit(addr << 1, g_twi_transfer_buffer, 2, ISSI_TIMEOUT); #endif } void IS31FL3736_write_pwm_buffer(uint8_t addr, uint8_t *pwm_buffer) { // assumes PG1 is already selected // transmit PWM registers in 12 transfers of 16 bytes // g_twi_transfer_buffer[] is 20 bytes // iterate over the pwm_buffer contents at 16 byte intervals for (int i = 0; i < 192; i += 16) { g_twi_transfer_buffer[0] = i; // copy the data from i to i+15 // device will auto-increment register for data after the first byte // thus this sets registers 0x00-0x0F, 0x10-0x1F, etc. in one transfer for (int j = 0; j < 16; j++) { g_twi_transfer_buffer[1 + j] = pwm_buffer[i + j]; } #if ISSI_PERSISTENCE > 0 for (uint8_t i = 0; i < ISSI_PERSISTENCE; i++) { if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 17, ISSI_TIMEOUT) == 0) break; } #else i2c_transmit(addr << 1, g_twi_transfer_buffer, 17, ISSI_TIMEOUT); #endif } } void IS31FL3736_init(uint8_t addr) { // In order to avoid the LEDs being driven with garbage data // in the LED driver's PWM registers, shutdown is enabled last. // Set up the mode and other settings, clear the PWM registers, // then disable software shutdown. // Unlock the command register. IS31FL3736_write_register(addr, ISSI_COMMANDREGISTER_WRITELOCK, 0xC5); // Select PG0 IS31FL3736_write_register(addr, ISSI_COMMANDREGISTER, ISSI_PAGE_LEDCONTROL); // Turn off all LEDs. for (int i = 0x00; i <= 0x17; i++) { IS31FL3736_write_register(addr, i, 0x00); } // Unlock the command register. IS31FL3736_write_register(addr, ISSI_COMMANDREGISTER_WRITELOCK, 0xC5); // Select PG1 IS31FL3736_write_register(addr, ISSI_COMMANDREGISTER, ISSI_PAGE_PWM); // Set PWM on all LEDs to 0 // No need to setup Breath registers to PWM as that is the default. for (int i = 0x00; i <= 0xBF; i++) { IS31FL3736_write_register(addr, i, 0x00); } // Unlock the command register. IS31FL3736_write_register(addr, ISSI_COMMANDREGISTER_WRITELOCK, 0xC5); // Select PG3 IS31FL3736_write_register(addr, ISSI_COMMANDREGISTER, ISSI_PAGE_FUNCTION); // Set de-ghost pull-up resistors (SWx) IS31FL3736_write_register(addr, ISSI_REG_SWPULLUP, ISSI_SWPULLUP); // Set de-ghost pull-down resistors (CSx) IS31FL3736_write_register(addr, ISSI_REG_CSPULLUP, ISSI_CSPULLUP); // Set global current to maximum. IS31FL3736_write_register(addr, ISSI_REG_GLOBALCURRENT, ISSI_GLOBALCURRENT); // Disable software shutdown. IS31FL3736_write_register(addr, ISSI_REG_CONFIGURATION, 0x01); // Wait 10ms to ensure the device has woken up. wait_ms(10); } void IS31FL3736_set_color(int index, uint8_t red, uint8_t green, uint8_t blue) { is31_led led; if (index >= 0 && index < RGB_MATRIX_LED_COUNT) { memcpy_P(&led, (&g_is31_leds[index]), sizeof(led)); g_pwm_buffer[led.driver][led.r] = red; g_pwm_buffer[led.driver][led.g] = green; g_pwm_buffer[led.driver][led.b] = blue; g_pwm_buffer_update_required = true; } } void IS31FL3736_set_color_all(uint8_t red, uint8_t green, uint8_t blue) { for (int i = 0; i < RGB_MATRIX_LED_COUNT; i++) { IS31FL3736_set_color(i, red, green, blue); } } void IS31FL3736_set_led_control_register(uint8_t index, bool red, bool green, bool blue) { is31_led led; memcpy_P(&led, (&g_is31_leds[index]), sizeof(led)); // IS31FL3733 // The PWM register for a matrix position (0x00 to 0xBF) can be // divided by 8 to get the LED control register (0x00 to 0x17), // then mod 8 to get the bit position within that register. // IS31FL3736 // The PWM register for a matrix position (0x00 to 0xBF) is interleaved, so: // A1=0x00 A2=0x02 A3=0x04 A4=0x06 A5=0x08 A6=0x0A A7=0x0C A8=0x0E // B1=0x10 B2=0x12 B3=0x14 // But also, the LED control registers (0x00 to 0x17) are also interleaved, so: // A1-A4=0x00 A5-A8=0x01 // So, the same math applies. uint8_t control_register_r = led.r / 8; uint8_t control_register_g = led.g / 8; uint8_t control_register_b = led.b / 8; uint8_t bit_r = led.r % 8; uint8_t bit_g = led.g % 8; uint8_t bit_b = led.b % 8; if (red) { g_led_control_registers[led.driver][control_register_r] |= (1 << bit_r); } else { g_led_control_registers[led.driver][control_register_r] &= ~(1 << bit_r); } if (green) { g_led_control_registers[led.driver][control_register_g] |= (1 << bit_g); } else { g_led_control_registers[led.driver][control_register_g] &= ~(1 << bit_g); } if (blue) { g_led_control_registers[led.driver][control_register_b] |= (1 << bit_b); } else { g_led_control_registers[led.driver][control_register_b] &= ~(1 << bit_b); } g_led_control_registers_update_required = true; } void IS31FL3736_mono_set_brightness(int index, uint8_t value) { if (index >= 0 && index < 96) { // Index in range 0..95 -> A1..A8, B1..B8, etc. // Map index 0..95 to registers 0x00..0xBE (interleaved) uint8_t pwm_register = index * 2; g_pwm_buffer[0][pwm_register] = value; g_pwm_buffer_update_required = true; } } void IS31FL3736_mono_set_brightness_all(uint8_t value) { for (int i = 0; i < 96; i++) { IS31FL3736_mono_set_brightness(i, value); } } void IS31FL3736_mono_set_led_control_register(uint8_t index, bool enabled) { // Index in range 0..95 -> A1..A8, B1..B8, etc. // Map index 0..95 to registers 0x00..0xBE (interleaved) uint8_t pwm_register = index * 2; // Map register 0x00..0xBE (interleaved) into control register and bit uint8_t control_register = pwm_register / 8; uint8_t bit = pwm_register % 8; if (enabled) { g_led_control_registers[0][control_register] |= (1 << bit); } else { g_led_control_registers[0][control_register] &= ~(1 << bit); } g_led_control_registers_update_required = true; } void IS31FL3736_update_pwm_buffers(uint8_t addr1, uint8_t addr2) { if (g_pwm_buffer_update_required) { // Firstly we need to unlock the command register and select PG1 IS31FL3736_write_register(addr1, ISSI_COMMANDREGISTER_WRITELOCK, 0xC5); IS31FL3736_write_register(addr1, ISSI_COMMANDREGISTER, ISSI_PAGE_PWM); IS31FL3736_write_pwm_buffer(addr1, g_pwm_buffer[0]); // IS31FL3736_write_pwm_buffer(addr2, g_pwm_buffer[1]); } g_pwm_buffer_update_required = false; } void IS31FL3736_update_led_control_registers(uint8_t addr1, uint8_t addr2) { if (g_led_control_registers_update_required) { // Firstly we need to unlock the command register and select PG0 IS31FL3736_write_register(addr1, ISSI_COMMANDREGISTER_WRITELOCK, 0xC5); IS31FL3736_write_register(addr1, ISSI_COMMANDREGISTER, ISSI_PAGE_LEDCONTROL); for (int i = 0; i < 24; i++) { IS31FL3736_write_register(addr1, i, g_led_control_registers[0][i]); // IS31FL3736_write_register(addr2, i, g_led_control_registers[1][i]); } g_led_control_registers_update_required = false; } }