/* Copyright 2021 @ Keychron (https://www.keychron.com) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "snled27351.h" #include "i2c_master.h" #define SNLED27351_PWM_REGISTER_COUNT 192 #define SNLED27351_LED_CONTROL_REGISTER_COUNT 24 #ifndef SNLED27351_I2C_TIMEOUT # define SNLED27351_I2C_TIMEOUT 100 #endif #ifndef SNLED27351_I2C_PERSISTENCE # define SNLED27351_I2C_PERSISTENCE 0 #endif #ifndef SNLED27351_PHASE_CHANNEL # define SNLED27351_PHASE_CHANNEL SNLED27351_SCAN_PHASE_12_CHANNEL #endif #ifndef SNLED27351_CURRENT_TUNE # define SNLED27351_CURRENT_TUNE \ { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF } #endif // Transfer buffer for TWITransmitData() uint8_t g_twi_transfer_buffer[65]; // These buffers match the SNLED27351 PWM registers. // The control buffers match the PG0 LED On/Off registers. // Storing them like this is optimal for I2C transfers to the registers. // We could optimize this and take out the unused registers from these // buffers and the transfers in snled27351_write_pwm_buffer() but it's // probably not worth the extra complexity. uint8_t g_pwm_buffer[SNLED27351_DRIVER_COUNT][SNLED27351_PWM_REGISTER_COUNT]; bool g_pwm_buffer_update_required[SNLED27351_DRIVER_COUNT] = {false}; uint8_t g_led_control_registers[SNLED27351_DRIVER_COUNT][SNLED27351_LED_CONTROL_REGISTER_COUNT] = {0}; bool g_led_control_registers_update_required[SNLED27351_DRIVER_COUNT] = {false}; bool snled27351_write_register(uint8_t addr, uint8_t reg, uint8_t data) { // If the transaction fails function returns false. g_twi_transfer_buffer[0] = reg; g_twi_transfer_buffer[1] = data; #if SNLED27351_I2C_PERSISTENCE > 0 for (uint8_t i = 0; i < SNLED27351_I2C_PERSISTENCE; i++) { if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 2, SNLED27351_I2C_TIMEOUT) != 0) { return false; } } #else if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 2, SNLED27351_I2C_TIMEOUT) != 0) { return false; } #endif return true; } void snled27351_select_page(uint8_t addr, uint8_t page) { snled27351_write_register(addr, SNLED27351_REG_COMMAND, page); } bool snled27351_write_pwm_buffer(uint8_t addr, uint8_t *pwm_buffer) { // Assumes PG1 is already selected. // If any of the transactions fails function returns false. // Transmit PWM registers in 3 transfers of 64 bytes. // Iterate over the pwm_buffer contents at 64 byte intervals. for (uint8_t i = 0; i < SNLED27351_PWM_REGISTER_COUNT; i += 64) { g_twi_transfer_buffer[0] = i; // Copy the data from i to i+63. // Device will auto-increment register for data after the first byte // Thus this sets registers 0x00-0x0F, 0x10-0x1F, etc. in one transfer. for (uint8_t j = 0; j < 64; j++) { g_twi_transfer_buffer[1 + j] = pwm_buffer[i + j]; } #if SNLED27351_I2C_PERSISTENCE > 0 for (uint8_t i = 0; i < SNLED27351_I2C_PERSISTENCE; i++) { if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 65, SNLED27351_I2C_TIMEOUT) != 0) { return false; } } #else if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 65, SNLED27351_I2C_TIMEOUT) != 0) { return false; } #endif } return true; } void snled27351_init_drivers(void) { i2c_init(); snled27351_init(SNLED27351_I2C_ADDRESS_1); #if defined(SNLED27351_I2C_ADDRESS_2) snled27351_init(SNLED27351_I2C_ADDRESS_2); # if defined(SNLED27351_I2C_ADDRESS_3) snled27351_init(SNLED27351_I2C_ADDRESS_3); # if defined(SNLED27351_I2C_ADDRESS_4) snled27351_init(SNLED27351_I2C_ADDRESS_4); # endif # endif #endif for (int i = 0; i < SNLED27351_LED_COUNT; i++) { snled27351_set_led_control_register(i, true, true, true); } snled27351_update_led_control_registers(SNLED27351_I2C_ADDRESS_1, 0); #if defined(SNLED27351_I2C_ADDRESS_2) snled27351_update_led_control_registers(SNLED27351_I2C_ADDRESS_2, 1); # if defined(SNLED27351_I2C_ADDRESS_3) snled27351_update_led_control_registers(SNLED27351_I2C_ADDRESS_3, 2); # if defined(SNLED27351_I2C_ADDRESS_4) snled27351_update_led_control_registers(SNLED27351_I2C_ADDRESS_4, 3); # endif # endif #endif } void snled27351_init(uint8_t addr) { snled27351_select_page(addr, SNLED27351_COMMAND_FUNCTION); // Setting LED driver to shutdown mode snled27351_write_register(addr, SNLED27351_FUNCTION_REG_SOFTWARE_SHUTDOWN, SNLED27351_SOFTWARE_SHUTDOWN_SSD_SHUTDOWN); // Setting internal channel pulldown/pullup snled27351_write_register(addr, SNLED27351_FUNCTION_REG_PULLDOWNUP, SNLED27351_PULLDOWNUP_ALL_ENABLED); // Select number of scan phase snled27351_write_register(addr, SNLED27351_FUNCTION_REG_SCAN_PHASE, SNLED27351_PHASE_CHANNEL); // Setting PWM Delay Phase snled27351_write_register(addr, SNLED27351_FUNCTION_REG_SLEW_RATE_CONTROL_MODE_1, SNLED27351_SLEW_RATE_CONTROL_MODE_1_PDP_ENABLE); // Setting Driving/Sinking Channel Slew Rate snled27351_write_register(addr, SNLED27351_FUNCTION_REG_SLEW_RATE_CONTROL_MODE_2, SNLED27351_SLEW_RATE_CONTROL_MODE_2_DSL_ENABLE | SNLED27351_SLEW_RATE_CONTROL_MODE_2_SSL_ENABLE); // Setting Iref snled27351_write_register(addr, SNLED27351_FUNCTION_REG_SOFTWARE_SLEEP, 0); snled27351_select_page(addr, SNLED27351_COMMAND_LED_CONTROL); for (int i = 0; i < SNLED27351_LED_CONTROL_ON_OFF_LENGTH; i++) { snled27351_write_register(addr, i, 0x00); } snled27351_select_page(addr, SNLED27351_COMMAND_PWM); for (int i = 0; i < SNLED27351_LED_CURRENT_TUNE_LENGTH; i++) { snled27351_write_register(addr, i, 0x00); } snled27351_select_page(addr, SNLED27351_COMMAND_CURRENT_TUNE); uint8_t current_tune_reg_list[SNLED27351_LED_CURRENT_TUNE_LENGTH] = SNLED27351_CURRENT_TUNE; for (int i = 0; i < SNLED27351_LED_CURRENT_TUNE_LENGTH; i++) { snled27351_write_register(addr, i, current_tune_reg_list[i]); } snled27351_select_page(addr, SNLED27351_COMMAND_LED_CONTROL); for (int i = 0; i < SNLED27351_LED_CONTROL_ON_OFF_LENGTH; i++) { snled27351_write_register(addr, i, 0xFF); } snled27351_select_page(addr, SNLED27351_COMMAND_FUNCTION); // Setting LED driver to normal mode snled27351_write_register(addr, SNLED27351_FUNCTION_REG_SOFTWARE_SHUTDOWN, SNLED27351_SOFTWARE_SHUTDOWN_SSD_NORMAL); } void snled27351_set_color(int index, uint8_t red, uint8_t green, uint8_t blue) { snled27351_led_t led; if (index >= 0 && index < SNLED27351_LED_COUNT) { memcpy_P(&led, (&g_snled27351_leds[index]), sizeof(led)); if (g_pwm_buffer[led.driver][led.r] == red && g_pwm_buffer[led.driver][led.g] == green && g_pwm_buffer[led.driver][led.b] == blue) { return; } g_pwm_buffer[led.driver][led.r] = red; g_pwm_buffer[led.driver][led.g] = green; g_pwm_buffer[led.driver][led.b] = blue; g_pwm_buffer_update_required[led.driver] = true; } } void snled27351_set_color_all(uint8_t red, uint8_t green, uint8_t blue) { for (int i = 0; i < SNLED27351_LED_COUNT; i++) { snled27351_set_color(i, red, green, blue); } } void snled27351_set_led_control_register(uint8_t index, bool red, bool green, bool blue) { snled27351_led_t led; memcpy_P(&led, (&g_snled27351_leds[index]), sizeof(led)); uint8_t control_register_r = led.r / 8; uint8_t control_register_g = led.g / 8; uint8_t control_register_b = led.b / 8; uint8_t bit_r = led.r % 8; uint8_t bit_g = led.g % 8; uint8_t bit_b = led.b % 8; if (red) { g_led_control_registers[led.driver][control_register_r] |= (1 << bit_r); } else { g_led_control_registers[led.driver][control_register_r] &= ~(1 << bit_r); } if (green) { g_led_control_registers[led.driver][control_register_g] |= (1 << bit_g); } else { g_led_control_registers[led.driver][control_register_g] &= ~(1 << bit_g); } if (blue) { g_led_control_registers[led.driver][control_register_b] |= (1 << bit_b); } else { g_led_control_registers[led.driver][control_register_b] &= ~(1 << bit_b); } g_led_control_registers_update_required[led.driver] = true; } void snled27351_update_pwm_buffers(uint8_t addr, uint8_t index) { if (g_pwm_buffer_update_required[index]) { snled27351_select_page(addr, SNLED27351_COMMAND_PWM); // If any of the transactions fail we risk writing dirty PG0, // refresh page 0 just in case. if (!snled27351_write_pwm_buffer(addr, g_pwm_buffer[index])) { g_led_control_registers_update_required[index] = true; } } g_pwm_buffer_update_required[index] = false; } void snled27351_update_led_control_registers(uint8_t addr, uint8_t index) { if (g_led_control_registers_update_required[index]) { snled27351_select_page(addr, SNLED27351_COMMAND_LED_CONTROL); for (int i = 0; i < SNLED27351_LED_CONTROL_REGISTER_COUNT; i++) { snled27351_write_register(addr, i, g_led_control_registers[index][i]); } } g_led_control_registers_update_required[index] = false; } void snled27351_flush(void) { snled27351_update_pwm_buffers(SNLED27351_I2C_ADDRESS_1, 0); #if defined(SNLED27351_I2C_ADDRESS_2) snled27351_update_pwm_buffers(SNLED27351_I2C_ADDRESS_2, 1); # if defined(SNLED27351_I2C_ADDRESS_3) snled27351_update_pwm_buffers(SNLED27351_I2C_ADDRESS_3, 2); # if defined(SNLED27351_I2C_ADDRESS_4) snled27351_update_pwm_buffers(SNLED27351_I2C_ADDRESS_4, 3); # endif # endif #endif } void snled27351_sw_return_normal(uint8_t addr) { snled27351_select_page(addr, SNLED27351_COMMAND_FUNCTION); // Setting LED driver to normal mode snled27351_write_register(addr, SNLED27351_FUNCTION_REG_SOFTWARE_SHUTDOWN, SNLED27351_SOFTWARE_SHUTDOWN_SSD_NORMAL); } void snled27351_sw_shutdown(uint8_t addr) { snled27351_select_page(addr, SNLED27351_COMMAND_FUNCTION); // Setting LED driver to shutdown mode snled27351_write_register(addr, SNLED27351_FUNCTION_REG_SOFTWARE_SHUTDOWN, SNLED27351_SOFTWARE_SHUTDOWN_SSD_SHUTDOWN); // Write SW Sleep Register snled27351_write_register(addr, SNLED27351_FUNCTION_REG_SOFTWARE_SLEEP, SNLED27351_SOFTWARE_SLEEP_ENABLE); }