/* Copyright 2017 Jason Williams (Wilba) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "keymap.h" // to get keymaps[][][] #include "eeprom.h" #include "progmem.h" // to read default from flash #include "quantum.h" // for send_string() #include "dynamic_keymap.h" #include "via.h" // for default VIA_EEPROM_ADDR_END #include #ifdef VIAL_ENABLE #include "vial.h" #endif #ifndef DYNAMIC_KEYMAP_MACRO_COUNT # define DYNAMIC_KEYMAP_MACRO_COUNT 16 #endif #ifndef TOTAL_EEPROM_BYTE_COUNT # error Unknown total EEPROM size. Cannot derive maximum for dynamic keymaps. #endif #ifndef DYNAMIC_KEYMAP_EEPROM_MAX_ADDR # define DYNAMIC_KEYMAP_EEPROM_MAX_ADDR (TOTAL_EEPROM_BYTE_COUNT - 1) #endif #if DYNAMIC_KEYMAP_EEPROM_MAX_ADDR > (TOTAL_EEPROM_BYTE_COUNT - 1) # pragma message STR(DYNAMIC_KEYMAP_EEPROM_MAX_ADDR) " > " STR((TOTAL_EEPROM_BYTE_COUNT - 1)) # error DYNAMIC_KEYMAP_EEPROM_MAX_ADDR is configured to use more space than what is available for the selected EEPROM driver #endif // Due to usage of uint16_t check for max 65535 #if DYNAMIC_KEYMAP_EEPROM_MAX_ADDR > 65535 # pragma message STR(DYNAMIC_KEYMAP_EEPROM_MAX_ADDR) " > 65535" # error DYNAMIC_KEYMAP_EEPROM_MAX_ADDR must be less than 65536 #endif // If DYNAMIC_KEYMAP_EEPROM_ADDR not explicitly defined in config.h, // default it start after VIA_EEPROM_CUSTOM_ADDR+VIA_EEPROM_CUSTOM_SIZE #ifndef DYNAMIC_KEYMAP_EEPROM_ADDR # ifdef VIA_EEPROM_CUSTOM_CONFIG_ADDR # define DYNAMIC_KEYMAP_EEPROM_ADDR (VIA_EEPROM_CUSTOM_CONFIG_ADDR + VIA_EEPROM_CUSTOM_CONFIG_SIZE) # else # error DYNAMIC_KEYMAP_EEPROM_ADDR not defined # endif #endif // Encoders are located right after the dynamic keymap #define VIAL_ENCODERS_EEPROM_ADDR (DYNAMIC_KEYMAP_EEPROM_ADDR + (DYNAMIC_KEYMAP_LAYER_COUNT * MATRIX_ROWS * MATRIX_COLS * 2)) #ifdef VIAL_ENCODERS_ENABLE #ifdef SPLIT_KEYBOARD #define NUMBER_OF_ENCODERS (2 * sizeof(encoders_pad_a) / sizeof(pin_t)) #else #define NUMBER_OF_ENCODERS (sizeof(encoders_pad_a) / sizeof(pin_t)) #endif static pin_t encoders_pad_a[] = ENCODERS_PAD_A; #define VIAL_ENCODERS_SIZE (NUMBER_OF_ENCODERS * DYNAMIC_KEYMAP_LAYER_COUNT * 2 * 2) #else #define VIAL_ENCODERS_SIZE 0 #endif #define VIAL_QMK_SETTINGS_EEPROM_ADDR (VIAL_ENCODERS_EEPROM_ADDR + VIAL_ENCODERS_SIZE) // QMK settings area is just past encoders #ifdef QMK_SETTINGS #include "qmk_settings.h" #define VIAL_QMK_SETTINGS_SIZE (sizeof(qmk_settings_t)) #else #define VIAL_QMK_SETTINGS_SIZE 0 #endif // Tap-dance #define VIAL_TAP_DANCE_EEPROM_ADDR (VIAL_QMK_SETTINGS_EEPROM_ADDR + VIAL_QMK_SETTINGS_SIZE) #ifdef VIAL_TAP_DANCE_ENABLE #define VIAL_TAP_DANCE_SIZE (sizeof(vial_tap_dance_entry_t) * VIAL_TAP_DANCE_ENTRIES) #else #define VIAL_TAP_DANCE_SIZE 0 #endif // Combos #define VIAL_COMBO_EEPROM_ADDR (VIAL_TAP_DANCE_EEPROM_ADDR + VIAL_TAP_DANCE_SIZE) #ifdef VIAL_COMBO_ENABLE #define VIAL_COMBO_SIZE (sizeof(vial_combo_entry_t) * VIAL_COMBO_ENTRIES) #else #define VIAL_COMBO_SIZE 0 #endif // Key overrides #define VIAL_KEY_OVERRIDE_EEPROM_ADDR (VIAL_COMBO_EEPROM_ADDR + VIAL_COMBO_SIZE) #ifdef VIAL_KEY_OVERRIDE_ENABLE #define VIAL_KEY_OVERRIDE_SIZE (sizeof(vial_key_override_entry_t) * VIAL_KEY_OVERRIDE_ENTRIES) #else #define VIAL_KEY_OVERRIDE_SIZE 0 #endif // Dynamic macro #ifndef DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR # define DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR (VIAL_KEY_OVERRIDE_EEPROM_ADDR + VIAL_KEY_OVERRIDE_SIZE) #endif // Sanity check that dynamic keymaps fit in available EEPROM // If there's not 100 bytes available for macros, then something is wrong. // The keyboard should override DYNAMIC_KEYMAP_LAYER_COUNT to reduce it, // or DYNAMIC_KEYMAP_EEPROM_MAX_ADDR to increase it, *only if* the microcontroller has // more than the default. _Static_assert(DYNAMIC_KEYMAP_EEPROM_MAX_ADDR >= DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + 100, "Dynamic keymaps are configured to use more EEPROM than is available."); // Dynamic macros are stored after the keymaps and use what is available // up to and including DYNAMIC_KEYMAP_EEPROM_MAX_ADDR. #ifndef DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE # define DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE (DYNAMIC_KEYMAP_EEPROM_MAX_ADDR - DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + 1) #endif uint8_t dynamic_keymap_get_layer_count(void) { return DYNAMIC_KEYMAP_LAYER_COUNT; } void *dynamic_keymap_key_to_eeprom_address(uint8_t layer, uint8_t row, uint8_t column) { // TODO: optimize this with some left shifts return ((void *)DYNAMIC_KEYMAP_EEPROM_ADDR) + (layer * MATRIX_ROWS * MATRIX_COLS * 2) + (row * MATRIX_COLS * 2) + (column * 2); } uint16_t dynamic_keymap_get_keycode(uint8_t layer, uint8_t row, uint8_t column) { if (layer >= DYNAMIC_KEYMAP_LAYER_COUNT || row >= MATRIX_ROWS || column >= MATRIX_COLS) return KC_NO; void *address = dynamic_keymap_key_to_eeprom_address(layer, row, column); // Big endian, so we can read/write EEPROM directly from host if we want uint16_t keycode = eeprom_read_byte(address) << 8; keycode |= eeprom_read_byte(address + 1); return keycode; } void dynamic_keymap_set_keycode(uint8_t layer, uint8_t row, uint8_t column, uint16_t keycode) { if (layer >= DYNAMIC_KEYMAP_LAYER_COUNT || row >= MATRIX_ROWS || column >= MATRIX_COLS) return; #ifdef VIAL_ENABLE if (keycode == RESET && !vial_unlocked) return; #endif void *address = dynamic_keymap_key_to_eeprom_address(layer, row, column); // Big endian, so we can read/write EEPROM directly from host if we want eeprom_update_byte(address, (uint8_t)(keycode >> 8)); eeprom_update_byte(address + 1, (uint8_t)(keycode & 0xFF)); } #ifdef VIAL_ENCODERS_ENABLE static void *dynamic_keymap_encoder_to_eeprom_address(uint8_t layer, uint8_t idx, uint8_t dir) { return ((void *)VIAL_ENCODERS_EEPROM_ADDR) + (layer * NUMBER_OF_ENCODERS * 2 * 2) + (idx * 2 * 2) + dir * 2; } uint16_t dynamic_keymap_get_encoder(uint8_t layer, uint8_t idx, uint8_t dir) { if (layer >= DYNAMIC_KEYMAP_LAYER_COUNT || idx >= NUMBER_OF_ENCODERS || dir > 1) return 0; void *address = dynamic_keymap_encoder_to_eeprom_address(layer, idx, dir); uint16_t keycode = eeprom_read_byte(address) << 8; keycode |= eeprom_read_byte(address + 1); return keycode; } void dynamic_keymap_set_encoder(uint8_t layer, uint8_t idx, uint8_t dir, uint16_t keycode) { if (layer >= DYNAMIC_KEYMAP_LAYER_COUNT || idx >= NUMBER_OF_ENCODERS || dir > 1) return; void *address = dynamic_keymap_encoder_to_eeprom_address(layer, idx, dir); eeprom_update_byte(address, (uint8_t)(keycode >> 8)); eeprom_update_byte(address + 1, (uint8_t)(keycode & 0xFF)); } #endif #ifdef QMK_SETTINGS uint8_t dynamic_keymap_get_qmk_settings(uint16_t offset) { if (offset >= VIAL_QMK_SETTINGS_SIZE) return 0; void *address = (void*)(VIAL_QMK_SETTINGS_EEPROM_ADDR + offset); return eeprom_read_byte(address); } void dynamic_keymap_set_qmk_settings(uint16_t offset, uint8_t value) { if (offset >= VIAL_QMK_SETTINGS_SIZE) return; void *address = (void*)(VIAL_QMK_SETTINGS_EEPROM_ADDR + offset); eeprom_update_byte(address, value); } #endif #ifdef VIAL_TAP_DANCE_ENABLE int dynamic_keymap_get_tap_dance(uint8_t index, vial_tap_dance_entry_t *entry) { if (index >= VIAL_TAP_DANCE_ENTRIES) return -1; void *address = (void*)(VIAL_TAP_DANCE_EEPROM_ADDR + index * sizeof(vial_tap_dance_entry_t)); eeprom_read_block(entry, address, sizeof(vial_tap_dance_entry_t)); return 0; } int dynamic_keymap_set_tap_dance(uint8_t index, const vial_tap_dance_entry_t *entry) { if (index >= VIAL_TAP_DANCE_ENTRIES) return -1; void *address = (void*)(VIAL_TAP_DANCE_EEPROM_ADDR + index * sizeof(vial_tap_dance_entry_t)); eeprom_write_block(entry, address, sizeof(vial_tap_dance_entry_t)); return 0; } #endif #ifdef VIAL_COMBO_ENABLE int dynamic_keymap_get_combo(uint8_t index, vial_combo_entry_t *entry) { if (index >= VIAL_COMBO_ENTRIES) return -1; void *address = (void*)(VIAL_COMBO_EEPROM_ADDR + index * sizeof(vial_combo_entry_t)); eeprom_read_block(entry, address, sizeof(vial_combo_entry_t)); return 0; } int dynamic_keymap_set_combo(uint8_t index, const vial_combo_entry_t *entry) { if (index >= VIAL_COMBO_ENTRIES) return -1; void *address = (void*)(VIAL_COMBO_EEPROM_ADDR + index * sizeof(vial_combo_entry_t)); eeprom_write_block(entry, address, sizeof(vial_combo_entry_t)); return 0; } #endif #ifdef VIAL_KEY_OVERRIDE_ENABLE int dynamic_keymap_get_key_override(uint8_t index, vial_key_override_entry_t *entry) { if (index >= VIAL_KEY_OVERRIDE_ENTRIES) return -1; void *address = (void*)(VIAL_KEY_OVERRIDE_EEPROM_ADDR + index * sizeof(vial_key_override_entry_t)); eeprom_read_block(entry, address, sizeof(vial_key_override_entry_t)); return 0; } int dynamic_keymap_set_key_override(uint8_t index, const vial_key_override_entry_t *entry) { if (index >= VIAL_KEY_OVERRIDE_ENTRIES) return -1; void *address = (void*)(VIAL_KEY_OVERRIDE_EEPROM_ADDR + index * sizeof(vial_key_override_entry_t)); eeprom_write_block(entry, address, sizeof(vial_key_override_entry_t)); return 0; } #endif #if defined(VIAL_ENCODERS_ENABLE) && defined(VIAL_ENCODER_DEFAULT) static const uint16_t PROGMEM vial_encoder_default[] = VIAL_ENCODER_DEFAULT; _Static_assert(sizeof(vial_encoder_default)/sizeof(*vial_encoder_default) == 2 * DYNAMIC_KEYMAP_LAYER_COUNT * NUMBER_OF_ENCODERS, "There should be DYNAMIC_KEYMAP_LAYER_COUNT * NUMBER_OF_ENCODERS * 2 entries in the VIAL_ENCODER_DEFAULT array."); #endif void dynamic_keymap_reset(void) { #ifdef VIAL_ENABLE /* temporarily unlock the keyboard so we can set hardcoded RESET keycode */ int vial_unlocked_prev = vial_unlocked; vial_unlocked = 1; #endif // Reset the keymaps in EEPROM to what is in flash. // All keyboards using dynamic keymaps should define a layout // for the same number of layers as DYNAMIC_KEYMAP_LAYER_COUNT. for (int layer = 0; layer < DYNAMIC_KEYMAP_LAYER_COUNT; layer++) { for (int row = 0; row < MATRIX_ROWS; row++) { for (int column = 0; column < MATRIX_COLS; column++) { dynamic_keymap_set_keycode(layer, row, column, pgm_read_word(&keymaps[layer][row][column])); } } #ifdef VIAL_ENCODERS_ENABLE for (int idx = 0; idx < NUMBER_OF_ENCODERS; ++idx) { #ifdef VIAL_ENCODER_DEFAULT dynamic_keymap_set_encoder(layer, idx, 0, pgm_read_word(&vial_encoder_default[2 * (layer * NUMBER_OF_ENCODERS + idx)])); dynamic_keymap_set_encoder(layer, idx, 1, pgm_read_word(&vial_encoder_default[2 * (layer * NUMBER_OF_ENCODERS + idx) + 1])); #else dynamic_keymap_set_encoder(layer, idx, 0, KC_TRNS); dynamic_keymap_set_encoder(layer, idx, 1, KC_TRNS); #endif } #endif } #ifdef QMK_SETTINGS qmk_settings_reset(); #endif #ifdef VIAL_TAP_DANCE_ENABLE vial_tap_dance_entry_t td = { KC_NO, KC_NO, KC_NO, KC_NO, TAPPING_TERM }; for (size_t i = 0; i < VIAL_TAP_DANCE_ENTRIES; ++i) { dynamic_keymap_set_tap_dance(i, &td); } #endif #ifdef VIAL_COMBO_ENABLE vial_combo_entry_t combo = { 0 }; for (size_t i = 0; i < VIAL_COMBO_ENTRIES; ++i) dynamic_keymap_set_combo(i, &combo); #endif #ifdef VIAL_KEY_OVERRIDE_ENABLE vial_key_override_entry_t ko = { 0 }; ko.layers = ~0; ko.options = vial_ko_option_activation_negative_mod_up | vial_ko_option_activation_required_mod_down | vial_ko_option_activation_trigger_down; for (size_t i = 0; i < VIAL_KEY_OVERRIDE_ENTRIES; ++i) dynamic_keymap_set_key_override(i, &ko); #endif #ifdef VIAL_ENABLE /* re-lock the keyboard */ vial_unlocked = vial_unlocked_prev; #endif } void dynamic_keymap_get_buffer(uint16_t offset, uint16_t size, uint8_t *data) { uint16_t dynamic_keymap_eeprom_size = DYNAMIC_KEYMAP_LAYER_COUNT * MATRIX_ROWS * MATRIX_COLS * 2; void * source = (void *)(DYNAMIC_KEYMAP_EEPROM_ADDR + offset); uint8_t *target = data; for (uint16_t i = 0; i < size; i++) { if (offset + i < dynamic_keymap_eeprom_size) { *target = eeprom_read_byte(source); } else { *target = 0x00; } source++; target++; } } void dynamic_keymap_set_buffer(uint16_t offset, uint16_t size, uint8_t *data) { uint16_t dynamic_keymap_eeprom_size = DYNAMIC_KEYMAP_LAYER_COUNT * MATRIX_ROWS * MATRIX_COLS * 2; void * target = (void *)(DYNAMIC_KEYMAP_EEPROM_ADDR + offset); uint8_t *source = data; #ifdef VIAL_ENABLE /* ensure the writes are bounded */ if (offset >= dynamic_keymap_eeprom_size || dynamic_keymap_eeprom_size - offset < size) return; #ifndef VIAL_INSECURE /* Check whether it is trying to send a RESET keycode; only allow setting these if unlocked */ if (!vial_unlocked) { /* how much of the input array we'll have to check in the loop */ uint16_t chk_offset = 0; uint16_t chk_sz = size; /* initial byte misaligned -- this means the first keycode will be a combination of existing and new data */ if (offset % 2 != 0) { uint16_t kc = (eeprom_read_byte((uint8_t*)target - 1) << 8) | data[0]; if (kc == RESET) data[0] = 0xFF; /* no longer have to check the first byte */ chk_offset += 1; } /* final byte misaligned -- this means the last keycode will be a combination of new and existing data */ if ((offset + size) % 2 != 0) { uint16_t kc = (data[size - 1] << 8) | eeprom_read_byte((uint8_t*)target + size); if (kc == RESET) data[size - 1] = 0xFF; /* no longer have to check the last byte */ chk_sz -= 1; } /* check the entire array, replace any instances of RESET with invalid keycode 0xFFFF */ for (uint16_t i = chk_offset; i < chk_sz; i += 2) { uint16_t kc = (data[i] << 8) | data[i + 1]; if (kc == RESET) { data[i] = 0xFF; data[i + 1] = 0xFF; } } } #endif #endif for (uint16_t i = 0; i < size; i++) { if (offset + i < dynamic_keymap_eeprom_size) { eeprom_update_byte(target, *source); } source++; target++; } } extern uint16_t g_vial_magic_keycode_override; // This overrides the one in quantum/keymap_common.c uint16_t keymap_key_to_keycode(uint8_t layer, keypos_t key) { #ifdef VIAL_ENABLE /* Disable any keycode processing while unlocking */ if (vial_unlock_in_progress) return KC_NO; if (key.row == VIAL_MATRIX_MAGIC && key.col == VIAL_MATRIX_MAGIC) return g_vial_magic_keycode_override; #endif if (layer < DYNAMIC_KEYMAP_LAYER_COUNT && key.row < MATRIX_ROWS && key.col < MATRIX_COLS) { return dynamic_keymap_get_keycode(layer, key.row, key.col); } else { return KC_NO; } } uint8_t dynamic_keymap_macro_get_count(void) { return DYNAMIC_KEYMAP_MACRO_COUNT; } uint16_t dynamic_keymap_macro_get_buffer_size(void) { return DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE; } void dynamic_keymap_macro_get_buffer(uint16_t offset, uint16_t size, uint8_t *data) { void * source = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + offset); uint8_t *target = data; for (uint16_t i = 0; i < size; i++) { if (offset + i < DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE) { *target = eeprom_read_byte(source); } else { *target = 0x00; } source++; target++; } } void dynamic_keymap_macro_set_buffer(uint16_t offset, uint16_t size, uint8_t *data) { void * target = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + offset); uint8_t *source = data; for (uint16_t i = 0; i < size; i++) { if (offset + i < DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE) { eeprom_update_byte(target, *source); } source++; target++; } } void dynamic_keymap_macro_reset(void) { void *p = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR); void *end = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE); while (p != end) { eeprom_update_byte(p, 0); ++p; } } static uint16_t decode_keycode(uint16_t kc) { /* map 0xFF01 => 0x0100; 0xFF02 => 0x0200, etc */ if (kc > 0xFF00) return (kc & 0xFF) << 8; return kc; } void dynamic_keymap_macro_send(uint8_t id) { if (id >= DYNAMIC_KEYMAP_MACRO_COUNT) { return; } // Check the last byte of the buffer. // If it's not zero, then we are in the middle // of buffer writing, possibly an aborted buffer // write. So do nothing. void *p = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE - 1); if (eeprom_read_byte(p) != 0) { return; } // Skip N null characters // p will then point to the Nth macro p = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR); void *end = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE); while (id > 0) { // If we are past the end of the buffer, then the buffer // contents are garbage, i.e. there were not DYNAMIC_KEYMAP_MACRO_COUNT // nulls in the buffer. if (p == end) { return; } if (eeprom_read_byte(p) == 0) { --id; } ++p; } // Send the macro string one or three chars at a time // by making temporary 1 or 3 char strings char data[4] = {0, 0, 0, 0}; // We already checked there was a null at the end of // the buffer, so this cannot go past the end while (1) { data[0] = eeprom_read_byte(p++); data[1] = 0; // Stop at the null terminator of this macro string if (data[0] == 0) { break; } if (data[0] == SS_QMK_PREFIX) { // If the char is magic, process it as indicated by the next character // (tap, down, up, delay) data[1] = eeprom_read_byte(p++); if (data[1] == 0) break; if (data[1] == SS_TAP_CODE || data[1] == SS_DOWN_CODE || data[1] == SS_UP_CODE) { // For tap, down, up, just stuff it into the array and send_string it data[2] = eeprom_read_byte(p++); if (data[2] != 0) send_string(data); } else if (data[1] == VIAL_MACRO_EXT_TAP || data[1] == VIAL_MACRO_EXT_DOWN || data[1] == VIAL_MACRO_EXT_UP) { data[2] = eeprom_read_byte(p++); if (data[2] != 0) { data[3] = eeprom_read_byte(p++); if (data[3] != 0) { uint16_t kc; memcpy(&kc, &data[2], sizeof(kc)); kc = decode_keycode(kc); switch (data[1]) { case VIAL_MACRO_EXT_TAP: vial_keycode_tap(kc); break; case VIAL_MACRO_EXT_DOWN: vial_keycode_down(kc); break; case VIAL_MACRO_EXT_UP: vial_keycode_up(kc); break; } } } } else if (data[1] == SS_DELAY_CODE) { // For delay, decode the delay and wait_ms for that amount uint8_t d0 = eeprom_read_byte(p++); uint8_t d1 = eeprom_read_byte(p++); if (d0 == 0 || d1 == 0) break; // we cannot use 0 for these, need to subtract 1 and use 255 instead of 256 for delay calculation int ms = (d0 - 1) + (d1 - 1) * 255; while (ms--) wait_ms(1); } } else { // If the char wasn't magic, just send it send_string(data); } } }