// Copyright 2023 Stefan Kerkmann // Copyright 2020-2021 Ryan (@fauxpark) // Copyright 2020 Nick Brassel (@tzarc) // Copyright 2020 a-chol // Copyright 2020 xyzz // Copyright 2020 Joel Challis (@zvecr) // Copyright 2020 George (@goshdarnharris) // Copyright 2018 James Laird-Wah // Copyright 2018 Drashna Jaelre (@drashna) // Copyright 2016 Fredizzimo // Copyright 2016 Giovanni Di Sirio // SPDX-License-Identifier: GPL-3.0-or-later OR Apache-2.0 #include #include #include #include "usb_main.h" #include "usb_report_handling.h" #include "host.h" #include "suspend.h" #include "timer.h" #ifdef SLEEP_LED_ENABLE # include "sleep_led.h" # include "led.h" #endif #include "wait.h" #include "usb_endpoints.h" #include "usb_device_state.h" #include "usb_descriptor.h" #include "usb_driver.h" #include "usb_types.h" #ifdef NKRO_ENABLE # include "keycode_config.h" extern keymap_config_t keymap_config; #endif /* --------------------------------------------------------- * Global interface variables and declarations * --------------------------------------------------------- */ #ifndef usb_lld_connect_bus # define usb_lld_connect_bus(usbp) #endif #ifndef usb_lld_disconnect_bus # define usb_lld_disconnect_bus(usbp) #endif extern usb_endpoint_in_t usb_endpoints_in[USB_ENDPOINT_IN_COUNT]; extern usb_endpoint_out_t usb_endpoints_out[USB_ENDPOINT_OUT_COUNT]; uint8_t _Alignas(2) keyboard_idle = 0; uint8_t _Alignas(2) keyboard_protocol = 1; uint8_t keyboard_led_state = 0; static bool __attribute__((__unused__)) send_report_buffered(usb_endpoint_in_lut_t endpoint, void *report, size_t size); static void __attribute__((__unused__)) flush_report_buffered(usb_endpoint_in_lut_t endpoint, bool padded); static bool __attribute__((__unused__)) receive_report(usb_endpoint_out_lut_t endpoint, void *report, size_t size); /* --------------------------------------------------------- * Descriptors and USB driver objects * --------------------------------------------------------- */ /* USB Low Level driver specific endpoint fields */ #if !defined(usb_lld_endpoint_fields) # define usb_lld_endpoint_fields \ 2, /* IN multiplier */ \ NULL, /* SETUP buffer (not a SETUP endpoint) */ #endif /* * Handles the GET_DESCRIPTOR callback * * Returns the proper descriptor */ static const USBDescriptor *usb_get_descriptor_cb(USBDriver *usbp, uint8_t dtype, uint8_t dindex, uint16_t wIndex) { usb_control_request_t *setup = (usb_control_request_t *)usbp->setup; static USBDescriptor descriptor; descriptor.ud_string = NULL; descriptor.ud_size = get_usb_descriptor(setup->wValue.word, setup->wIndex, setup->wLength, (const void **const) & descriptor.ud_string); if (descriptor.ud_string == NULL) { return NULL; } return &descriptor; } /* --------------------------------------------------------- * USB driver functions * --------------------------------------------------------- */ #define USB_EVENT_QUEUE_SIZE 16 usbevent_t event_queue[USB_EVENT_QUEUE_SIZE]; uint8_t event_queue_head; uint8_t event_queue_tail; void usb_event_queue_init(void) { // Initialise the event queue memset(&event_queue, 0, sizeof(event_queue)); event_queue_head = 0; event_queue_tail = 0; } static inline bool usb_event_queue_enqueue(usbevent_t event) { uint8_t next = (event_queue_head + 1) % USB_EVENT_QUEUE_SIZE; if (next == event_queue_tail) { return false; } event_queue[event_queue_head] = event; event_queue_head = next; return true; } static inline bool usb_event_queue_dequeue(usbevent_t *event) { if (event_queue_head == event_queue_tail) { return false; } *event = event_queue[event_queue_tail]; event_queue_tail = (event_queue_tail + 1) % USB_EVENT_QUEUE_SIZE; return true; } static inline void usb_event_suspend_handler(void) { usb_device_state_set_suspend(USB_DRIVER.configuration != 0, USB_DRIVER.configuration); #ifdef SLEEP_LED_ENABLE sleep_led_enable(); #endif /* SLEEP_LED_ENABLE */ } static inline void usb_event_wakeup_handler(void) { suspend_wakeup_init(); usb_device_state_set_resume(USB_DRIVER.configuration != 0, USB_DRIVER.configuration); #ifdef SLEEP_LED_ENABLE sleep_led_disable(); // NOTE: converters may not accept this led_set(host_keyboard_leds()); #endif /* SLEEP_LED_ENABLE */ } bool last_suspend_state = false; void usb_event_queue_task(void) { usbevent_t event; while (usb_event_queue_dequeue(&event)) { switch (event) { case USB_EVENT_SUSPEND: last_suspend_state = true; usb_event_suspend_handler(); break; case USB_EVENT_WAKEUP: last_suspend_state = false; usb_event_wakeup_handler(); break; case USB_EVENT_CONFIGURED: usb_device_state_set_configuration(USB_DRIVER.configuration != 0, USB_DRIVER.configuration); break; case USB_EVENT_UNCONFIGURED: usb_device_state_set_configuration(false, 0); break; case USB_EVENT_RESET: usb_device_state_set_reset(); break; default: // Nothing to do, we don't handle it. break; } } } /* Handles the USB driver global events. */ static void usb_event_cb(USBDriver *usbp, usbevent_t event) { switch (event) { case USB_EVENT_ADDRESS: return; case USB_EVENT_CONFIGURED: osalSysLockFromISR(); for (int i = 0; i < USB_ENDPOINT_IN_COUNT; i++) { usb_endpoint_in_configure_cb(&usb_endpoints_in[i]); } for (int i = 0; i < USB_ENDPOINT_OUT_COUNT; i++) { usb_endpoint_out_configure_cb(&usb_endpoints_out[i]); } osalSysUnlockFromISR(); if (last_suspend_state) { usb_event_queue_enqueue(USB_EVENT_WAKEUP); } usb_event_queue_enqueue(USB_EVENT_CONFIGURED); return; case USB_EVENT_SUSPEND: /* Falls into.*/ case USB_EVENT_UNCONFIGURED: /* Falls into.*/ case USB_EVENT_RESET: usb_event_queue_enqueue(event); chSysLockFromISR(); for (int i = 0; i < USB_ENDPOINT_IN_COUNT; i++) { usb_endpoint_in_suspend_cb(&usb_endpoints_in[i]); } for (int i = 0; i < USB_ENDPOINT_OUT_COUNT; i++) { usb_endpoint_out_suspend_cb(&usb_endpoints_out[i]); } chSysUnlockFromISR(); return; case USB_EVENT_WAKEUP: chSysLockFromISR(); for (int i = 0; i < USB_ENDPOINT_IN_COUNT; i++) { usb_endpoint_in_wakeup_cb(&usb_endpoints_in[i]); } for (int i = 0; i < USB_ENDPOINT_OUT_COUNT; i++) { usb_endpoint_out_wakeup_cb(&usb_endpoints_out[i]); } chSysUnlockFromISR(); usb_event_queue_enqueue(USB_EVENT_WAKEUP); return; case USB_EVENT_STALLED: return; } } /* * Appendix G: HID Request Support Requirements * * The following table enumerates the requests that need to be supported by various types of HID class devices. * Device type GetReport SetReport GetIdle SetIdle GetProtocol SetProtocol * ------------------------------------------------------------------------------------------ * Boot Mouse Required Optional Optional Optional Required Required * Non-Boot Mouse Required Optional Optional Optional Optional Optional * Boot Keyboard Required Optional Required Required Required Required * Non-Boot Keybrd Required Optional Required Required Optional Optional * Other Device Required Optional Optional Optional Optional Optional */ static uint8_t _Alignas(4) set_report_buf[2]; static void set_led_transfer_cb(USBDriver *usbp) { usb_control_request_t *setup = (usb_control_request_t *)usbp->setup; if (setup->wLength == 2) { uint8_t report_id = set_report_buf[0]; if ((report_id == REPORT_ID_KEYBOARD) || (report_id == REPORT_ID_NKRO)) { keyboard_led_state = set_report_buf[1]; } } else { keyboard_led_state = set_report_buf[0]; } } static bool usb_requests_hook_cb(USBDriver *usbp) { usb_control_request_t *setup = (usb_control_request_t *)usbp->setup; /* Handle HID class specific requests */ if ((setup->bmRequestType & (USB_RTYPE_TYPE_MASK | USB_RTYPE_RECIPIENT_MASK)) == (USB_RTYPE_TYPE_CLASS | USB_RTYPE_RECIPIENT_INTERFACE)) { switch (setup->bmRequestType & USB_RTYPE_DIR_MASK) { case USB_RTYPE_DIR_DEV2HOST: switch (setup->bRequest) { case HID_REQ_GetReport: return usb_get_report_cb(usbp); case HID_REQ_GetProtocol: if (setup->wIndex == KEYBOARD_INTERFACE) { usbSetupTransfer(usbp, &keyboard_protocol, sizeof(uint8_t), NULL); return true; } break; case HID_REQ_GetIdle: return usb_get_idle_cb(usbp); } case USB_RTYPE_DIR_HOST2DEV: switch (setup->bRequest) { case HID_REQ_SetReport: switch (setup->wIndex) { case KEYBOARD_INTERFACE: #if defined(SHARED_EP_ENABLE) && !defined(KEYBOARD_SHARED_EP) case SHARED_INTERFACE: #endif usbSetupTransfer(usbp, set_report_buf, sizeof(set_report_buf), set_led_transfer_cb); return true; } break; case HID_REQ_SetProtocol: if (setup->wIndex == KEYBOARD_INTERFACE) { keyboard_protocol = setup->wValue.word; } usbSetupTransfer(usbp, NULL, 0, NULL); return true; case HID_REQ_SetIdle: keyboard_idle = setup->wValue.hbyte; return usb_set_idle_cb(usbp); } break; } } /* Handle the Get_Descriptor Request for HID class, which is not handled by * the ChibiOS USB driver */ if (((setup->bmRequestType & (USB_RTYPE_DIR_MASK | USB_RTYPE_RECIPIENT_MASK)) == (USB_RTYPE_DIR_DEV2HOST | USB_RTYPE_RECIPIENT_INTERFACE)) && (setup->bRequest == USB_REQ_GET_DESCRIPTOR)) { const USBDescriptor *descriptor = usbp->config->get_descriptor_cb(usbp, setup->wValue.lbyte, setup->wValue.hbyte, setup->wIndex); if (descriptor == NULL) { return false; } usbSetupTransfer(usbp, (uint8_t *)descriptor->ud_string, descriptor->ud_size, NULL); return true; } for (int i = 0; i < USB_ENDPOINT_IN_COUNT; i++) { if (usb_endpoints_in[i].usb_requests_cb != NULL) { if (usb_endpoints_in[i].usb_requests_cb(usbp)) { return true; } } } return false; } static __attribute__((unused)) void dummy_cb(USBDriver *usbp) { (void)usbp; } static const USBConfig usbcfg = { usb_event_cb, /* USB events callback */ usb_get_descriptor_cb, /* Device GET_DESCRIPTOR request callback */ usb_requests_hook_cb, /* Requests hook callback */ #if STM32_USB_USE_OTG1 == TRUE || STM32_USB_USE_OTG2 == TRUE dummy_cb, /* Workaround for OTG Peripherals not servicing new interrupts after resuming from suspend. */ #endif }; void init_usb_driver(USBDriver *usbp) { for (int i = 0; i < USB_ENDPOINT_IN_COUNT; i++) { usb_endpoint_in_init(&usb_endpoints_in[i]); usb_endpoint_in_start(&usb_endpoints_in[i]); } for (int i = 0; i < USB_ENDPOINT_OUT_COUNT; i++) { usb_endpoint_out_init(&usb_endpoints_out[i]); usb_endpoint_out_start(&usb_endpoints_out[i]); } /* * Activates the USB driver and then the USB bus pull-up on D+. * Note, a delay is inserted in order to not have to disconnect the cable * after a reset. */ usbDisconnectBus(usbp); usbStop(usbp); wait_ms(50); usbStart(usbp, &usbcfg); usbConnectBus(usbp); } __attribute__((weak)) void restart_usb_driver(USBDriver *usbp) { usbDisconnectBus(usbp); usbStop(usbp); for (int i = 0; i < USB_ENDPOINT_IN_COUNT; i++) { usb_endpoint_in_stop(&usb_endpoints_in[i]); } for (int i = 0; i < USB_ENDPOINT_OUT_COUNT; i++) { usb_endpoint_out_stop(&usb_endpoints_out[i]); } wait_ms(50); for (int i = 0; i < USB_ENDPOINT_IN_COUNT; i++) { usb_endpoint_in_init(&usb_endpoints_in[i]); usb_endpoint_in_start(&usb_endpoints_in[i]); } for (int i = 0; i < USB_ENDPOINT_OUT_COUNT; i++) { usb_endpoint_out_init(&usb_endpoints_out[i]); usb_endpoint_out_start(&usb_endpoints_out[i]); } usbStart(usbp, &usbcfg); usbConnectBus(usbp); } /* --------------------------------------------------------- * Keyboard functions * --------------------------------------------------------- */ /* LED status */ uint8_t keyboard_leds(void) { return keyboard_led_state; } /** * @brief Send a report to the host, the report is enqueued into an output * queue and send once the USB endpoint becomes empty. * * @param endpoint USB IN endpoint to send the report from * @param report pointer to the report * @param size size of the report * @return true Success * @return false Failure */ bool send_report(usb_endpoint_in_lut_t endpoint, void *report, size_t size) { return usb_endpoint_in_send(&usb_endpoints_in[endpoint], (uint8_t *)report, size, TIME_MS2I(100), false); } /** * @brief Send a report to the host, but delay the sending until the size of * endpoint report is reached or the incompletely filled buffer is flushed with * a call to `flush_report_buffered`. This is useful if the report is being * updated frequently. The complete report is then enqueued into an output * queue and send once the USB endpoint becomes empty. * * @param endpoint USB IN endpoint to send the report from * @param report pointer to the report * @param size size of the report * @return true Success * @return false Failure */ static bool send_report_buffered(usb_endpoint_in_lut_t endpoint, void *report, size_t size) { return usb_endpoint_in_send(&usb_endpoints_in[endpoint], (uint8_t *)report, size, TIME_MS2I(100), true); } /** @brief Flush all buffered reports which were enqueued with a call to * `send_report_buffered` that haven't been send. If necessary the buffered * report can be padded with zeros up to the endpoints maximum size. * * @param endpoint USB IN endpoint to flush the reports from * @param padded Pad the buffered report with zeros up to the endpoints maximum size */ static void flush_report_buffered(usb_endpoint_in_lut_t endpoint, bool padded) { usb_endpoint_in_flush(&usb_endpoints_in[endpoint], padded); } /** * @brief Receive a report from the host. * * @param endpoint USB OUT endpoint to receive the report from * @param report pointer to the report * @param size size of the report * @return true Success * @return false Failure */ static bool receive_report(usb_endpoint_out_lut_t endpoint, void *report, size_t size) { return usb_endpoint_out_receive(&usb_endpoints_out[endpoint], (uint8_t *)report, size, TIME_IMMEDIATE); } void send_keyboard(report_keyboard_t *report) { /* If we're in Boot Protocol, don't send any report ID or other funky fields */ if (!keyboard_protocol) { send_report(USB_ENDPOINT_IN_KEYBOARD, &report->mods, 8); } else { send_report(USB_ENDPOINT_IN_KEYBOARD, report, KEYBOARD_REPORT_SIZE); } } void send_nkro(report_nkro_t *report) { #ifdef NKRO_ENABLE send_report(USB_ENDPOINT_IN_SHARED, report, sizeof(report_nkro_t)); #endif } /* --------------------------------------------------------- * Mouse functions * --------------------------------------------------------- */ void send_mouse(report_mouse_t *report) { #ifdef MOUSE_ENABLE send_report(USB_ENDPOINT_IN_MOUSE, report, sizeof(report_mouse_t)); #endif } /* --------------------------------------------------------- * Extrakey functions * --------------------------------------------------------- */ void send_extra(report_extra_t *report) { #ifdef EXTRAKEY_ENABLE send_report(USB_ENDPOINT_IN_SHARED, report, sizeof(report_extra_t)); #endif } void send_programmable_button(report_programmable_button_t *report) { #ifdef PROGRAMMABLE_BUTTON_ENABLE send_report(USB_ENDPOINT_IN_SHARED, report, sizeof(report_programmable_button_t)); #endif } void send_joystick(report_joystick_t *report) { #ifdef JOYSTICK_ENABLE send_report(USB_ENDPOINT_IN_JOYSTICK, report, sizeof(report_joystick_t)); #endif } void send_digitizer(report_digitizer_t *report) { #ifdef DIGITIZER_ENABLE send_report(USB_ENDPOINT_IN_DIGITIZER, report, sizeof(report_digitizer_t)); #endif } /* --------------------------------------------------------- * Console functions * --------------------------------------------------------- */ #ifdef CONSOLE_ENABLE int8_t sendchar(uint8_t c) { return (int8_t)send_report_buffered(USB_ENDPOINT_IN_CONSOLE, &c, sizeof(uint8_t)); } void console_task(void) { flush_report_buffered(USB_ENDPOINT_IN_CONSOLE, true); } #endif /* CONSOLE_ENABLE */ #ifdef RAW_ENABLE void raw_hid_send(uint8_t *data, uint8_t length) { if (length != RAW_EPSIZE) { return; } send_report(USB_ENDPOINT_IN_RAW, data, length); } __attribute__((weak)) void raw_hid_receive(uint8_t *data, uint8_t length) { // Users should #include "raw_hid.h" in their own code // and implement this function there. Leave this as weak linkage // so users can opt to not handle data coming in. } void raw_hid_task(void) { uint8_t buffer[RAW_EPSIZE]; while (receive_report(USB_ENDPOINT_OUT_RAW, buffer, sizeof(buffer))) { raw_hid_receive(buffer, sizeof(buffer)); } } #endif #ifdef MIDI_ENABLE void send_midi_packet(MIDI_EventPacket_t *event) { send_report(USB_ENDPOINT_IN_MIDI, (uint8_t *)event, sizeof(MIDI_EventPacket_t)); } bool recv_midi_packet(MIDI_EventPacket_t *const event) { return receive_report(USB_ENDPOINT_OUT_MIDI, (uint8_t *)event, sizeof(MIDI_EventPacket_t)); } void midi_ep_task(void) { uint8_t buffer[MIDI_STREAM_EPSIZE]; while (receive_report(USB_ENDPOINT_OUT_MIDI, buffer, sizeof(buffer))) { MIDI_EventPacket_t event; // TODO: this seems totally wrong? The midi task will never see any // packets if we consume them here recv_midi_packet(&event); } } #endif #ifdef VIRTSER_ENABLE # include "hal_usb_cdc.h" /** * @brief CDC serial driver configuration structure. Set to 9600 baud, 1 stop bit, no parity, 8 data bits. */ static cdc_linecoding_t linecoding = {{0x00, 0x96, 0x00, 0x00}, LC_STOP_1, LC_PARITY_NONE, 8}; bool virtser_usb_request_cb(USBDriver *usbp) { if ((usbp->setup[0] & USB_RTYPE_TYPE_MASK) == USB_RTYPE_TYPE_CLASS) { /* bmRequestType */ if (usbp->setup[4] == CCI_INTERFACE) { /* wIndex (LSB) */ switch (usbp->setup[1]) { /* bRequest */ case CDC_GET_LINE_CODING: usbSetupTransfer(usbp, (uint8_t *)&linecoding, sizeof(linecoding), NULL); return true; case CDC_SET_LINE_CODING: usbSetupTransfer(usbp, (uint8_t *)&linecoding, sizeof(linecoding), NULL); return true; case CDC_SET_CONTROL_LINE_STATE: /* Nothing to do, there are no control lines.*/ usbSetupTransfer(usbp, NULL, 0, NULL); return true; default: return false; } } } return false; } void virtser_init(void) {} void virtser_send(const uint8_t byte) { send_report_buffered(USB_ENDPOINT_IN_CDC_DATA, (void *)&byte, sizeof(byte)); } __attribute__((weak)) void virtser_recv(uint8_t c) { // Ignore by default } void virtser_task(void) { uint8_t buffer[CDC_EPSIZE]; while (receive_report(USB_ENDPOINT_OUT_CDC_DATA, buffer, sizeof(buffer))) { for (int i = 0; i < sizeof(buffer); i++) { virtser_recv(buffer[i]); } } flush_report_buffered(USB_ENDPOINT_IN_CDC_DATA, false); } #endif