qmk-keychron-q3-colemak-dh/platforms/chibios/drivers/analog.c
Cipulot 81cedf5fa5
Add ADC support STM32L4xx and STM32G4xx series MCUs (#22341)
* Update analog.c

* Changes to remove errors in compile

* Update analog.c

Fix for RP2040 build errors

* Revert "Merge branch 'adc-add-stm32l4xx-stm32g4xx' of https://github.com/Cipulot/qmk_firmware into adc-add-stm32l4xx-stm32g4xx"

This reverts commit b11c2970785ce41ec772689749d71a2bd0ab48e7, reversing
changes made to ed3051f94109b53eb1735882abfe7f57473bdca8.

* Update analog.c

Attempt fix for formatting CI error

* Update platforms/chibios/drivers/analog.c

Co-authored-by: Joel Challis <git@zvecr.com>

* Update platforms/chibios/drivers/analog.c

Co-authored-by: Joel Challis <git@zvecr.com>

* Update platforms/chibios/drivers/analog.c

Co-authored-by: Joel Challis <git@zvecr.com>

---------

Co-authored-by: Joel Challis <git@zvecr.com>
2023-12-08 01:26:44 +00:00

423 lines
20 KiB
C

/* Copyright 2019 Drew Mills
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "analog.h"
#include <ch.h>
#include <hal.h>
#if !HAL_USE_ADC
# error "You need to set HAL_USE_ADC to TRUE in your halconf.h to use the ADC."
#endif
#if !RP_ADC_USE_ADC1 && !STM32_ADC_USE_ADC1 && !STM32_ADC_USE_ADC2 && !STM32_ADC_USE_ADC3 && !STM32_ADC_USE_ADC4 && !WB32_ADC_USE_ADC1
# error "You need to set one of the 'xxx_ADC_USE_ADCx' settings to TRUE in your mcuconf.h to use the ADC."
#endif
#if STM32_ADC_DUAL_MODE
# error "STM32 ADC Dual Mode is not supported at this time."
#endif
#if STM32_ADCV3_OVERSAMPLING
// Apparently all ADCV3 chips that support oversampling (STM32L4xx, STM32L4xx+,
// STM32G4xx, STM32WB[35]x) have errata like “Wrong ADC result if conversion
// done late after calibration or previous conversion”; the workaround is to
// perform a dummy conversion and discard its result. STM32G4xx chips also
// have the “ADC channel 0 converted instead of the required ADC channel”
// errata, one workaround for which is also to perform a dummy conversion.
# define ADC_DUMMY_CONVERSIONS_AT_START 1
#else
# define ADC_DUMMY_CONVERSIONS_AT_START 0
#endif
// Otherwise assume V3
#if defined(STM32F0XX) || defined(STM32L0XX)
# define USE_ADCV1
#elif defined(STM32F1XX) || defined(STM32F2XX) || defined(STM32F4XX) || defined(GD32VF103) || defined(WB32F3G71xx) || defined(WB32FQ95xx)
# define USE_ADCV2
#endif
// BODGE to make v2 look like v1,3 and 4
#if defined(USE_ADCV2) || defined(RP2040)
# if !defined(ADC_SMPR_SMP_1P5) && defined(ADC_SAMPLE_3)
# define ADC_SMPR_SMP_1P5 ADC_SAMPLE_3
# define ADC_SMPR_SMP_7P5 ADC_SAMPLE_15
# define ADC_SMPR_SMP_13P5 ADC_SAMPLE_28
# define ADC_SMPR_SMP_28P5 ADC_SAMPLE_56
# define ADC_SMPR_SMP_41P5 ADC_SAMPLE_84
# define ADC_SMPR_SMP_55P5 ADC_SAMPLE_112
# define ADC_SMPR_SMP_71P5 ADC_SAMPLE_144
# define ADC_SMPR_SMP_239P5 ADC_SAMPLE_480
# endif
# if !defined(ADC_SMPR_SMP_1P5) && defined(ADC_SAMPLE_1P5)
# define ADC_SMPR_SMP_1P5 ADC_SAMPLE_1P5
# define ADC_SMPR_SMP_7P5 ADC_SAMPLE_7P5
# define ADC_SMPR_SMP_13P5 ADC_SAMPLE_13P5
# define ADC_SMPR_SMP_28P5 ADC_SAMPLE_28P5
# define ADC_SMPR_SMP_41P5 ADC_SAMPLE_41P5
# define ADC_SMPR_SMP_55P5 ADC_SAMPLE_55P5
# define ADC_SMPR_SMP_71P5 ADC_SAMPLE_71P5
# define ADC_SMPR_SMP_239P5 ADC_SAMPLE_239P5
# endif
// we still sample at 12bit, but scale down to the requested bit range
# define ADC_CFGR1_RES_12BIT 12
# define ADC_CFGR1_RES_10BIT 10
# define ADC_CFGR1_RES_8BIT 8
# define ADC_CFGR1_RES_6BIT 6
#endif
/* User configurable ADC options */
#ifndef ADC_COUNT
# if defined(RP2040) || defined(STM32F0XX) || defined(STM32F1XX) || defined(STM32F4XX) || defined(GD32VF103) || defined(WB32F3G71xx) || defined(WB32FQ95xx)
# define ADC_COUNT 1
# elif defined(STM32F3XX) || defined(STM32G4XX)
# define ADC_COUNT 4
# elif defined(STM32L4XX)
# define ADC_COUNT 3
# else
# error "ADC_COUNT has not been set for this ARM microcontroller."
# endif
#endif
#ifndef ADC_NUM_CHANNELS
# define ADC_NUM_CHANNELS 1
#elif ADC_NUM_CHANNELS != 1
# error "The ARM ADC implementation currently only supports reading one channel at a time."
#endif
// Add dummy conversions as extra channels (this would work only on chips that
// have multiple channel index fields instead of a channel mask, but all chips
// that need that workaround are like that).
#define ADC_TOTAL_CHANNELS (ADC_DUMMY_CONVERSIONS_AT_START + ADC_NUM_CHANNELS)
#ifndef ADC_BUFFER_DEPTH
# define ADC_BUFFER_DEPTH 1
#endif
// For more sampling rate options, look at hal_adc_lld.h in ChibiOS
#if !defined(ADC_SAMPLING_RATE) && !defined(RP2040)
# if defined(ADC_SMPR_SMP_1P5)
# define ADC_SAMPLING_RATE ADC_SMPR_SMP_1P5
# elif defined(ADC_SMPR_SMP_2P5) // STM32L4XX, STM32L4XXP, STM32G4XX, STM32WBXX
# define ADC_SAMPLING_RATE ADC_SMPR_SMP_2P5
# else
# error "Cannot determine the default ADC_SAMPLING_RATE for this MCU."
# endif
#endif
// Options are 12, 10, 8, and 6 bit.
#ifndef ADC_RESOLUTION
# ifdef ADC_CFGR_RES_10BITS // ADCv3, ADCv4
# define ADC_RESOLUTION ADC_CFGR_RES_10BITS
# else // ADCv1, ADCv5, or the bodge for ADCv2 above
# define ADC_RESOLUTION ADC_CFGR1_RES_10BIT
# endif
#endif
static ADCConfig adcCfg = {};
static adcsample_t sampleBuffer[ADC_TOTAL_CHANNELS * ADC_BUFFER_DEPTH];
// Initialize to max number of ADCs, set to empty object to initialize all to false.
static bool adcInitialized[ADC_COUNT] = {};
// TODO: add back TR handling???
static ADCConversionGroup adcConversionGroup = {
.circular = FALSE,
.num_channels = (uint16_t)(ADC_TOTAL_CHANNELS),
#if defined(USE_ADCV1)
.cfgr1 = ADC_CFGR1_CONT | ADC_RESOLUTION,
.smpr = ADC_SAMPLING_RATE,
#elif defined(USE_ADCV2)
# if !defined(STM32F1XX) && !defined(GD32VF103) && !defined(WB32F3G71xx) && !defined(WB32FQ95xx)
.cr2 = ADC_CR2_SWSTART, // F103 seem very unhappy with, F401 seems very unhappy without...
# endif
.smpr2 = ADC_SMPR2_SMP_AN0(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN1(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN2(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN3(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN4(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN5(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN6(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN7(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN8(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN9(ADC_SAMPLING_RATE),
.smpr1 = ADC_SMPR1_SMP_AN10(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN11(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN12(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN13(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN14(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN15(ADC_SAMPLING_RATE),
#elif defined(RP2040)
// RP2040 does not have any extra config here
#else
.cfgr = ADC_CFGR_CONT | ADC_RESOLUTION,
.smpr = {ADC_SMPR1_SMP_AN0(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN1(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN2(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN3(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN4(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN5(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN6(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN7(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN8(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN9(ADC_SAMPLING_RATE), ADC_SMPR2_SMP_AN10(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN11(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN12(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN13(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN14(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN15(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN16(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN17(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN18(ADC_SAMPLING_RATE)},
#endif
};
// clang-format off
__attribute__((weak)) adc_mux pinToMux(pin_t pin) {
switch (pin) {
#if defined(STM32F0XX)
case A0: return TO_MUX( 0, 0 );
case A1: return TO_MUX( 1, 0 );
case A2: return TO_MUX( 2, 0 );
case A3: return TO_MUX( 3, 0 );
case A4: return TO_MUX( 4, 0 );
case A5: return TO_MUX( 5, 0 );
case A6: return TO_MUX( 6, 0 );
case A7: return TO_MUX( 7, 0 );
case B0: return TO_MUX( 8, 0 );
case B1: return TO_MUX( 9, 0 );
case C0: return TO_MUX( 10, 0 );
case C1: return TO_MUX( 11, 0 );
case C2: return TO_MUX( 12, 0 );
case C3: return TO_MUX( 13, 0 );
case C4: return TO_MUX( 14, 0 );
case C5: return TO_MUX( 15, 0 );
#elif defined(STM32F3XX)
case A0: return TO_MUX( ADC_CHANNEL_IN1, 0 );
case A1: return TO_MUX( ADC_CHANNEL_IN2, 0 );
case A2: return TO_MUX( ADC_CHANNEL_IN3, 0 );
case A3: return TO_MUX( ADC_CHANNEL_IN4, 0 );
case A4: return TO_MUX( ADC_CHANNEL_IN1, 1 );
case A5: return TO_MUX( ADC_CHANNEL_IN2, 1 );
case A6: return TO_MUX( ADC_CHANNEL_IN3, 1 );
case A7: return TO_MUX( ADC_CHANNEL_IN4, 1 );
case B0: return TO_MUX( ADC_CHANNEL_IN12, 2 );
case B1: return TO_MUX( ADC_CHANNEL_IN1, 2 );
case B2: return TO_MUX( ADC_CHANNEL_IN12, 1 );
case B12: return TO_MUX( ADC_CHANNEL_IN3, 3 );
case B13: return TO_MUX( ADC_CHANNEL_IN5, 2 );
case B14: return TO_MUX( ADC_CHANNEL_IN4, 3 );
case B15: return TO_MUX( ADC_CHANNEL_IN5, 3 );
case C0: return TO_MUX( ADC_CHANNEL_IN6, 0 ); // Can also be ADC2
case C1: return TO_MUX( ADC_CHANNEL_IN7, 0 ); // Can also be ADC2
case C2: return TO_MUX( ADC_CHANNEL_IN8, 0 ); // Can also be ADC2
case C3: return TO_MUX( ADC_CHANNEL_IN9, 0 ); // Can also be ADC2
case C4: return TO_MUX( ADC_CHANNEL_IN5, 1 );
case C5: return TO_MUX( ADC_CHANNEL_IN11, 1 );
case D8: return TO_MUX( ADC_CHANNEL_IN12, 3 );
case D9: return TO_MUX( ADC_CHANNEL_IN13, 3 );
case D10: return TO_MUX( ADC_CHANNEL_IN7, 2 ); // Can also be ADC4
case D11: return TO_MUX( ADC_CHANNEL_IN8, 2 ); // Can also be ADC4
case D12: return TO_MUX( ADC_CHANNEL_IN9, 2 ); // Can also be ADC4
case D13: return TO_MUX( ADC_CHANNEL_IN10, 2 ); // Can also be ADC4
case D14: return TO_MUX( ADC_CHANNEL_IN11, 2 ); // Can also be ADC4
case E7: return TO_MUX( ADC_CHANNEL_IN13, 2 );
case E8: return TO_MUX( ADC_CHANNEL_IN6, 2 ); // Can also be ADC4
case E9: return TO_MUX( ADC_CHANNEL_IN2, 2 );
case E10: return TO_MUX( ADC_CHANNEL_IN14, 2 );
case E11: return TO_MUX( ADC_CHANNEL_IN15, 2 );
case E12: return TO_MUX( ADC_CHANNEL_IN16, 2 );
case E13: return TO_MUX( ADC_CHANNEL_IN3, 2 );
case E14: return TO_MUX( ADC_CHANNEL_IN1, 3 );
case E15: return TO_MUX( ADC_CHANNEL_IN2, 3 );
case F2: return TO_MUX( ADC_CHANNEL_IN10, 0 ); // Can also be ADC2
case F4: return TO_MUX( ADC_CHANNEL_IN5, 0 );
#elif defined(STM32F4XX)
case A0: return TO_MUX( ADC_CHANNEL_IN0, 0 );
case A1: return TO_MUX( ADC_CHANNEL_IN1, 0 );
case A2: return TO_MUX( ADC_CHANNEL_IN2, 0 );
case A3: return TO_MUX( ADC_CHANNEL_IN3, 0 );
case A4: return TO_MUX( ADC_CHANNEL_IN4, 0 );
case A5: return TO_MUX( ADC_CHANNEL_IN5, 0 );
case A6: return TO_MUX( ADC_CHANNEL_IN6, 0 );
case A7: return TO_MUX( ADC_CHANNEL_IN7, 0 );
case B0: return TO_MUX( ADC_CHANNEL_IN8, 0 );
case B1: return TO_MUX( ADC_CHANNEL_IN9, 0 );
case C0: return TO_MUX( ADC_CHANNEL_IN10, 0 );
case C1: return TO_MUX( ADC_CHANNEL_IN11, 0 );
case C2: return TO_MUX( ADC_CHANNEL_IN12, 0 );
case C3: return TO_MUX( ADC_CHANNEL_IN13, 0 );
case C4: return TO_MUX( ADC_CHANNEL_IN14, 0 );
case C5: return TO_MUX( ADC_CHANNEL_IN15, 0 );
# if STM32_ADC_USE_ADC3
case F3: return TO_MUX( ADC_CHANNEL_IN9, 2 );
case F4: return TO_MUX( ADC_CHANNEL_IN14, 2 );
case F5: return TO_MUX( ADC_CHANNEL_IN15, 2 );
case F6: return TO_MUX( ADC_CHANNEL_IN4, 2 );
case F7: return TO_MUX( ADC_CHANNEL_IN5, 2 );
case F8: return TO_MUX( ADC_CHANNEL_IN6, 2 );
case F9: return TO_MUX( ADC_CHANNEL_IN7, 2 );
case F10: return TO_MUX( ADC_CHANNEL_IN8, 2 );
# endif
#elif defined(STM32F1XX) || defined(GD32VF103) || defined(WB32F3G71xx) || defined(WB32FQ95xx)
case A0: return TO_MUX( ADC_CHANNEL_IN0, 0 );
case A1: return TO_MUX( ADC_CHANNEL_IN1, 0 );
case A2: return TO_MUX( ADC_CHANNEL_IN2, 0 );
case A3: return TO_MUX( ADC_CHANNEL_IN3, 0 );
case A4: return TO_MUX( ADC_CHANNEL_IN4, 0 );
case A5: return TO_MUX( ADC_CHANNEL_IN5, 0 );
case A6: return TO_MUX( ADC_CHANNEL_IN6, 0 );
case A7: return TO_MUX( ADC_CHANNEL_IN7, 0 );
case B0: return TO_MUX( ADC_CHANNEL_IN8, 0 );
case B1: return TO_MUX( ADC_CHANNEL_IN9, 0 );
case C0: return TO_MUX( ADC_CHANNEL_IN10, 0 );
case C1: return TO_MUX( ADC_CHANNEL_IN11, 0 );
case C2: return TO_MUX( ADC_CHANNEL_IN12, 0 );
case C3: return TO_MUX( ADC_CHANNEL_IN13, 0 );
case C4: return TO_MUX( ADC_CHANNEL_IN14, 0 );
case C5: return TO_MUX( ADC_CHANNEL_IN15, 0 );
// STM32F103x[C-G] in 144-pin packages also have analog inputs on F6...F10, but they are on ADC3, and the
// ChibiOS ADC driver for STM32F1xx currently supports only ADC1, therefore these pins are not usable.
#elif defined(STM32L4XX)
case A0: return TO_MUX( ADC_CHANNEL_IN5, 0 ); // Can also be ADC2 in some cases
case A1: return TO_MUX( ADC_CHANNEL_IN6, 0 ); // Can also be ADC2 in some cases
case A2: return TO_MUX( ADC_CHANNEL_IN7, 0 ); // Can also be ADC2
case A3: return TO_MUX( ADC_CHANNEL_IN8, 0 ); // Can also be ADC2
case A4: return TO_MUX( ADC_CHANNEL_IN9, 0 ); // Can also be ADC2
case A5: return TO_MUX( ADC_CHANNEL_IN10, 0 ); // Can also be ADC2
case A6: return TO_MUX( ADC_CHANNEL_IN11, 0 ); // Can also be ADC2
case A7: return TO_MUX( ADC_CHANNEL_IN12, 0 ); // Can also be ADC2
case B0: return TO_MUX( ADC_CHANNEL_IN15, 0 ); // Can also be ADC2
case B1: return TO_MUX( ADC_CHANNEL_IN16, 0 ); // Can also be ADC2
case C0: return TO_MUX( ADC_CHANNEL_IN1, 0 ); // Can also be ADC2 or ADC3
case C1: return TO_MUX( ADC_CHANNEL_IN2, 0 ); // Can also be ADC2 or ADC3
case C2: return TO_MUX( ADC_CHANNEL_IN3, 0 ); // Can also be ADC2 or ADC3
case C3: return TO_MUX( ADC_CHANNEL_IN4, 0 ); // Can also be ADC2 or ADC3
case C4: return TO_MUX( ADC_CHANNEL_IN13, 0 ); // Can also be ADC2
case C5: return TO_MUX( ADC_CHANNEL_IN14, 0 ); // Can also be ADC2
# if STM32_HAS_GPIOF && STM32_ADC_USE_ADC3
case F3: return TO_MUX( ADC_CHANNEL_IN6, 2 );
case F4: return TO_MUX( ADC_CHANNEL_IN7, 2 );
case F5: return TO_MUX( ADC_CHANNEL_IN8, 2 );
case F6: return TO_MUX( ADC_CHANNEL_IN9, 2 );
case F7: return TO_MUX( ADC_CHANNEL_IN10, 2 );
case F8: return TO_MUX( ADC_CHANNEL_IN11, 2 );
case F9: return TO_MUX( ADC_CHANNEL_IN12, 2 );
case F10: return TO_MUX( ADC_CHANNEL_IN13, 2 );
# endif
#elif defined(STM32G4XX)
case A0: return TO_MUX( ADC_CHANNEL_IN1, 0 ); // Can also be ADC2
case A1: return TO_MUX( ADC_CHANNEL_IN2, 0 ); // Can also be ADC2
case A2: return TO_MUX( ADC_CHANNEL_IN3, 0 );
case A3: return TO_MUX( ADC_CHANNEL_IN4, 0 );
case A4: return TO_MUX( ADC_CHANNEL_IN17, 1 );
case A5: return TO_MUX( ADC_CHANNEL_IN13, 1 );
case A6: return TO_MUX( ADC_CHANNEL_IN3, 1 );
case A7: return TO_MUX( ADC_CHANNEL_IN4, 1 );
case B0: return TO_MUX( ADC_CHANNEL_IN15, 0 ); // Can also be ADC3
case B1: return TO_MUX( ADC_CHANNEL_IN12, 0 ); // Can also be ADC3
case B2: return TO_MUX( ADC_CHANNEL_IN12, 1 );
case B11: return TO_MUX( ADC_CHANNEL_IN14, 0 ); // Can also be ADC2
case B12: return TO_MUX( ADC_CHANNEL_IN11, 0 ); // Can also be ADC4
case B13: return TO_MUX( ADC_CHANNEL_IN5, 2 );
case B14: return TO_MUX( ADC_CHANNEL_IN5, 0 ); // Can also be ADC4
case B15: return TO_MUX( ADC_CHANNEL_IN15, 1 ); // Can also be ADC4
case C0: return TO_MUX( ADC_CHANNEL_IN6, 0 ); // Can also be ADC2
case C1: return TO_MUX( ADC_CHANNEL_IN7, 0 ); // Can also be ADC2
case C2: return TO_MUX( ADC_CHANNEL_IN8, 0 ); // Can also be ADC2
case C3: return TO_MUX( ADC_CHANNEL_IN9, 0 ); // Can also be ADC2
case C4: return TO_MUX( ADC_CHANNEL_IN5, 1 );
case C5: return TO_MUX( ADC_CHANNEL_IN11, 1 );
case D8: return TO_MUX( ADC_CHANNEL_IN12, 3 );
case D9: return TO_MUX( ADC_CHANNEL_IN13, 3 );
case D10: return TO_MUX( ADC_CHANNEL_IN7, 2 ); // Can also be ADC4
case D11: return TO_MUX( ADC_CHANNEL_IN8, 2 ); // Can also be ADC4
case D12: return TO_MUX( ADC_CHANNEL_IN9, 2 ); // Can also be ADC4
case D13: return TO_MUX( ADC_CHANNEL_IN10, 2 ); // Can also be ADC4
case D14: return TO_MUX( ADC_CHANNEL_IN11, 2 ); // Can also be ADC4
case E5: return TO_MUX( ADC_CHANNEL_IN2, 3 );
case E7: return TO_MUX( ADC_CHANNEL_IN4, 2 );
case E8: return TO_MUX( ADC_CHANNEL_IN6, 2 ); // Can also be ADC4
case E9: return TO_MUX( ADC_CHANNEL_IN2, 2 );
case E10: return TO_MUX( ADC_CHANNEL_IN14, 2 ); // Can also be ADC4
case E11: return TO_MUX( ADC_CHANNEL_IN15, 2 ); // Can also be ADC4
case E12: return TO_MUX( ADC_CHANNEL_IN16, 2 ); // Can also be ADC4
case E13: return TO_MUX( ADC_CHANNEL_IN3, 2 );
case E14: return TO_MUX( ADC_CHANNEL_IN1, 3 );
case F0: return TO_MUX( ADC_CHANNEL_IN10, 0 );
case F1: return TO_MUX( ADC_CHANNEL_IN10, 1 );
#elif defined(RP2040)
case 26U: return TO_MUX(0, 0);
case 27U: return TO_MUX(1, 0);
case 28U: return TO_MUX(2, 0);
case 29U: return TO_MUX(3, 0);
#endif
}
// return an adc that would never be used so intToADCDriver will bail out
return TO_MUX(0, 0xFF);
}
// clang-format on
static inline ADCDriver* intToADCDriver(uint8_t adcInt) {
switch (adcInt) {
#if RP_ADC_USE_ADC1 || STM32_ADC_USE_ADC1 || WB32_ADC_USE_ADC1
case 0:
return &ADCD1;
#endif
#if STM32_ADC_USE_ADC2
case 1:
return &ADCD2;
#endif
#if STM32_ADC_USE_ADC3
case 2:
return &ADCD3;
#endif
#if STM32_ADC_USE_ADC4
case 3:
return &ADCD4;
#endif
}
return NULL;
}
static inline void manageAdcInitializationDriver(uint8_t adc, ADCDriver* adcDriver) {
if (!adcInitialized[adc]) {
adcStart(adcDriver, &adcCfg);
adcInitialized[adc] = true;
}
}
int16_t analogReadPin(pin_t pin) {
palSetLineMode(pin, PAL_MODE_INPUT_ANALOG);
return adc_read(pinToMux(pin));
}
int16_t analogReadPinAdc(pin_t pin, uint8_t adc) {
palSetLineMode(pin, PAL_MODE_INPUT_ANALOG);
adc_mux target = pinToMux(pin);
target.adc = adc;
return adc_read(target);
}
int16_t adc_read(adc_mux mux) {
#if defined(USE_ADCV1)
// TODO: fix previous assumption of only 1 input...
adcConversionGroup.chselr = 1 << mux.input; /*no macro to convert N to ADC_CHSELR_CHSEL1*/
#elif defined(USE_ADCV2)
adcConversionGroup.sqr3 = ADC_SQR3_SQ1_N(mux.input);
#elif defined(RP2040)
adcConversionGroup.channel_mask = 1 << mux.input;
#else
adcConversionGroup.sqr[0] = ADC_SQR1_SQ1_N(mux.input)
# if ADC_DUMMY_CONVERSIONS_AT_START >= 1
| ADC_SQR1_SQ2_N(mux.input)
# endif
;
#endif
ADCDriver* targetDriver = intToADCDriver(mux.adc);
if (!targetDriver) {
return 0;
}
manageAdcInitializationDriver(mux.adc, targetDriver);
if (adcConvert(targetDriver, &adcConversionGroup, &sampleBuffer[0], ADC_BUFFER_DEPTH) != MSG_OK) {
return 0;
}
#if defined(USE_ADCV2) || defined(RP2040)
// fake 12-bit -> N-bit scale
return (sampleBuffer[ADC_DUMMY_CONVERSIONS_AT_START]) >> (12 - ADC_RESOLUTION);
#else
// already handled as part of adcConvert
return sampleBuffer[ADC_DUMMY_CONVERSIONS_AT_START];
#endif
}