qmk-keychron-q3-colemak-dh/keyboards/bpiphany/frosty_flake/frosty_flake.c
Dustin L. Howett b72a1aa3fe
Rewrite the Bathroom Epiphanies Frosty Flake matrix and LED handling (#8243)
* Keyboard: revamp frosty-flake leds

This commit transitions bpiphany/frosty_flake to led_update_{kb,user}
and rewrites the AVR bit twiddling logic to use the standard QMK GPIO
API.

* Keyboard: rewrite frosty_flake's matrix reader to be a lite custom matrix

This commit replaces frosty_flake's custom matrix and debounce logic
with a "lite" custom matrix. In addition to being somewhat clearer, this
allows a consumer of the flake board to choose their own debouncing
algorithm. The one closest to the implementation originally in use is
sym_g, but this opens us up to supporting eager_pk and eager_pr.

The original matrix code was 18 columns for 8 rows, but using a single
row read and unpacking the bits into individual columns. To simplify,
I've changed the key layout to be 8C 18R instead of 18C 8R: this lets us
use a single read directly into the matrix _and_ drop down to a uint8_t
instead of a uint32_t for matrix_row_t.

Since we're no longer implementing our own debouncing and row unpacking,
we save ~400 bytes on the final firmware image.

Fully tested against a CM Storm QFR hosting the flake -- this commit
message was written using the new matrix code.

Firmware Sizes (assuming stock configuration as of 42d6270f2)

Matrix+Debounce     Size (bytes)
---------------     ------------
original            17740
new + sym_g         17284
new + eager_pr      18106
new + eager_pk      18204

I expect that there are some scanning speed benefits as well.

* Keyboard: update frosty_flake's UNUSED_PINS

* Keyboard: Remove meaningless weak redefinitions from frosty

These are not necessary (and all of them already live somewhere in
Quantum).
2020-03-02 05:17:09 +00:00

25 lines
534 B
C

#include "frosty_flake.h"
void keyboard_pre_init_kb() {
setPinOutput(B7); // num lock
writePinHigh(B7);
setPinOutput(C5); // caps lock
writePinHigh(C7);
setPinOutput(C6); // scroll lock
writePinHigh(C6);
keyboard_pre_init_user();
}
bool led_update_kb(led_t usb_led) {
// user requests no further processing
if (!led_update_user(usb_led))
return true;
writePin(C5, !usb_led.caps_lock);
writePin(B7, !usb_led.num_lock);
writePin(C6, !usb_led.scroll_lock);
return true;
}