qmk-keychron-q3-colemak-dh/quantum/dynamic_keymap.c
2021-03-23 23:02:35 -04:00

406 lines
15 KiB
C

/* Copyright 2017 Jason Williams (Wilba)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include "keymap.h" // to get keymaps[][][]
#include "tmk_core/common/eeprom.h"
#include "progmem.h" // to read default from flash
#include "quantum.h" // for send_string()
#include "dynamic_keymap.h"
#include "via.h" // for default VIA_EEPROM_ADDR_END
#ifdef VIAL_ENABLE
#include "vial.h"
#endif
#ifndef DYNAMIC_KEYMAP_MACRO_COUNT
# define DYNAMIC_KEYMAP_MACRO_COUNT 16
#endif
// This is the default EEPROM max address to use for dynamic keymaps.
// The default is the ATmega32u4 EEPROM max address.
// Explicitly override it if the keyboard uses a microcontroller with
// more EEPROM *and* it makes sense to increase it.
#ifndef DYNAMIC_KEYMAP_EEPROM_MAX_ADDR
# if defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB647__) || defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB1287__)
# define DYNAMIC_KEYMAP_EEPROM_MAX_ADDR 2047
# elif defined(__AVR_AT90USB162__)
# define DYNAMIC_KEYMAP_EEPROM_MAX_ADDR 511
# else
# define DYNAMIC_KEYMAP_EEPROM_MAX_ADDR 1023
# endif
#endif
// Due to usage of uint16_t check for max 65535
#if DYNAMIC_KEYMAP_EEPROM_MAX_ADDR > 65535
# error DYNAMIC_KEYMAP_EEPROM_MAX_ADDR must be less than 65536
#endif
// If DYNAMIC_KEYMAP_EEPROM_ADDR not explicitly defined in config.h,
// default it start after VIA_EEPROM_CUSTOM_ADDR+VIA_EEPROM_CUSTOM_SIZE
#ifndef DYNAMIC_KEYMAP_EEPROM_ADDR
# ifdef VIA_EEPROM_CUSTOM_CONFIG_ADDR
# define DYNAMIC_KEYMAP_EEPROM_ADDR (VIA_EEPROM_CUSTOM_CONFIG_ADDR + VIA_EEPROM_CUSTOM_CONFIG_SIZE)
# else
# error DYNAMIC_KEYMAP_EEPROM_ADDR not defined
# endif
#endif
// Encoders are located right after the dynamic keymap
#define VIAL_ENCODERS_EEPROM_ADDR (DYNAMIC_KEYMAP_EEPROM_ADDR + (DYNAMIC_KEYMAP_LAYER_COUNT * MATRIX_ROWS * MATRIX_COLS * 2))
#ifdef VIAL_ENCODERS_ENABLE
#ifdef SPLIT_KEYBOARD
#define NUMBER_OF_ENCODERS (2 * sizeof(encoders_pad_a) / sizeof(pin_t))
#else
#define NUMBER_OF_ENCODERS (sizeof(encoders_pad_a) / sizeof(pin_t))
#endif
static pin_t encoders_pad_a[] = ENCODERS_PAD_A;
#define VIAL_ENCODERS_SIZE (NUMBER_OF_ENCODERS * DYNAMIC_KEYMAP_LAYER_COUNT * 2 * 2)
#else
#define VIAL_ENCODERS_SIZE 0
#endif
// Dynamic macro starts after encoders, or dynamic keymaps if encoders aren't enabled
#ifndef DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR
# define DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR (VIAL_ENCODERS_EEPROM_ADDR + VIAL_ENCODERS_SIZE)
#endif
// Sanity check that dynamic keymaps fit in available EEPROM
// If there's not 100 bytes available for macros, then something is wrong.
// The keyboard should override DYNAMIC_KEYMAP_LAYER_COUNT to reduce it,
// or DYNAMIC_KEYMAP_EEPROM_MAX_ADDR to increase it, *only if* the microcontroller has
// more than the default.
_Static_assert(DYNAMIC_KEYMAP_EEPROM_MAX_ADDR - DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR >= 100, "Dynamic keymaps are configured to use more EEPROM than is available.");
// Dynamic macros are stored after the keymaps and use what is available
// up to and including DYNAMIC_KEYMAP_EEPROM_MAX_ADDR.
#ifndef DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE
# define DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE (DYNAMIC_KEYMAP_EEPROM_MAX_ADDR - DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + 1)
#endif
uint8_t dynamic_keymap_get_layer_count(void) { return DYNAMIC_KEYMAP_LAYER_COUNT; }
void *dynamic_keymap_key_to_eeprom_address(uint8_t layer, uint8_t row, uint8_t column) {
// TODO: optimize this with some left shifts
return ((void *)DYNAMIC_KEYMAP_EEPROM_ADDR) + (layer * MATRIX_ROWS * MATRIX_COLS * 2) + (row * MATRIX_COLS * 2) + (column * 2);
}
uint16_t dynamic_keymap_get_keycode(uint8_t layer, uint8_t row, uint8_t column) {
if (layer >= DYNAMIC_KEYMAP_LAYER_COUNT || row >= MATRIX_ROWS || column >= MATRIX_COLS)
return KC_NO;
void *address = dynamic_keymap_key_to_eeprom_address(layer, row, column);
// Big endian, so we can read/write EEPROM directly from host if we want
uint16_t keycode = eeprom_read_byte(address) << 8;
keycode |= eeprom_read_byte(address + 1);
return keycode;
}
void dynamic_keymap_set_keycode(uint8_t layer, uint8_t row, uint8_t column, uint16_t keycode) {
if (layer >= DYNAMIC_KEYMAP_LAYER_COUNT || row >= MATRIX_ROWS || column >= MATRIX_COLS)
return;
#ifdef VIAL_ENABLE
if (keycode == RESET && !vial_unlocked)
return;
#endif
void *address = dynamic_keymap_key_to_eeprom_address(layer, row, column);
// Big endian, so we can read/write EEPROM directly from host if we want
eeprom_update_byte(address, (uint8_t)(keycode >> 8));
eeprom_update_byte(address + 1, (uint8_t)(keycode & 0xFF));
}
#ifdef VIAL_ENCODERS_ENABLE
static void *dynamic_keymap_encoder_to_eeprom_address(uint8_t layer, uint8_t idx, uint8_t dir) {
return ((void *)VIAL_ENCODERS_EEPROM_ADDR) + (layer * NUMBER_OF_ENCODERS * 2 * 2) + (idx * 2 * 2) + dir * 2;
}
uint16_t dynamic_keymap_get_encoder(uint8_t layer, uint8_t idx, uint8_t dir) {
if (layer >= DYNAMIC_KEYMAP_LAYER_COUNT || idx >= NUMBER_OF_ENCODERS || dir > 1)
return 0;
void *address = dynamic_keymap_encoder_to_eeprom_address(layer, idx, dir);
uint16_t keycode = eeprom_read_byte(address) << 8;
keycode |= eeprom_read_byte(address + 1);
return keycode;
}
void dynamic_keymap_set_encoder(uint8_t layer, uint8_t idx, uint8_t dir, uint16_t keycode) {
if (layer >= DYNAMIC_KEYMAP_LAYER_COUNT || idx >= NUMBER_OF_ENCODERS || dir > 1)
return;
#ifdef VIAL_ENABLE
if (keycode == RESET && !vial_unlocked)
return;
#endif
void *address = dynamic_keymap_encoder_to_eeprom_address(layer, idx, dir);
eeprom_update_byte(address, (uint8_t)(keycode >> 8));
eeprom_update_byte(address + 1, (uint8_t)(keycode & 0xFF));
}
#endif
#if defined(VIAL_ENCODERS_ENABLE) && defined(VIAL_ENCODER_DEFAULT)
static const uint16_t PROGMEM vial_encoder_default[] = VIAL_ENCODER_DEFAULT;
_Static_assert(sizeof(vial_encoder_default)/sizeof(*vial_encoder_default) == 2 * DYNAMIC_KEYMAP_LAYER_COUNT * NUMBER_OF_ENCODERS,
"There should be DYNAMIC_KEYMAP_LAYER_COUNT * NUMBER_OF_ENCODERS * 2 entries in the VIAL_ENCODER_DEFAULT array.");
#endif
void dynamic_keymap_reset(void) {
#ifdef VIAL_ENABLE
/* temporarily unlock the keyboard so we can set hardcoded RESET keycode */
int vial_unlocked_prev = vial_unlocked;
vial_unlocked = 1;
#endif
// Reset the keymaps in EEPROM to what is in flash.
// All keyboards using dynamic keymaps should define a layout
// for the same number of layers as DYNAMIC_KEYMAP_LAYER_COUNT.
for (int layer = 0; layer < DYNAMIC_KEYMAP_LAYER_COUNT; layer++) {
for (int row = 0; row < MATRIX_ROWS; row++) {
for (int column = 0; column < MATRIX_COLS; column++) {
dynamic_keymap_set_keycode(layer, row, column, pgm_read_word(&keymaps[layer][row][column]));
}
}
#ifdef VIAL_ENCODERS_ENABLE
for (int idx = 0; idx < NUMBER_OF_ENCODERS; ++idx) {
#ifdef VIAL_ENCODER_DEFAULT
dynamic_keymap_set_encoder(layer, idx, 0, pgm_read_word(&vial_encoder_default[2 * (layer * NUMBER_OF_ENCODERS + idx)]));
dynamic_keymap_set_encoder(layer, idx, 1, pgm_read_word(&vial_encoder_default[2 * (layer * NUMBER_OF_ENCODERS + idx) + 1]));
#else
dynamic_keymap_set_encoder(layer, idx, 0, KC_TRNS);
dynamic_keymap_set_encoder(layer, idx, 1, KC_TRNS);
#endif
}
#endif
}
#ifdef VIAL_ENABLE
/* re-lock the keyboard */
vial_unlocked = vial_unlocked_prev;
#endif
}
void dynamic_keymap_get_buffer(uint16_t offset, uint16_t size, uint8_t *data) {
uint16_t dynamic_keymap_eeprom_size = DYNAMIC_KEYMAP_LAYER_COUNT * MATRIX_ROWS * MATRIX_COLS * 2;
void * source = (void *)(DYNAMIC_KEYMAP_EEPROM_ADDR + offset);
uint8_t *target = data;
for (uint16_t i = 0; i < size; i++) {
if (offset + i < dynamic_keymap_eeprom_size) {
*target = eeprom_read_byte(source);
} else {
*target = 0x00;
}
source++;
target++;
}
}
void dynamic_keymap_set_buffer(uint16_t offset, uint16_t size, uint8_t *data) {
uint16_t dynamic_keymap_eeprom_size = DYNAMIC_KEYMAP_LAYER_COUNT * MATRIX_ROWS * MATRIX_COLS * 2;
void * target = (void *)(DYNAMIC_KEYMAP_EEPROM_ADDR + offset);
uint8_t *source = data;
#ifdef VIAL_ENABLE
/* ensure the writes are bounded */
if (offset >= dynamic_keymap_eeprom_size || dynamic_keymap_eeprom_size - offset < size)
return;
#ifndef VIAL_INSECURE
/* Check whether it is trying to send a RESET keycode; only allow setting these if unlocked */
if (!vial_unlocked) {
/* how much of the input array we'll have to check in the loop */
uint16_t chk_offset = 0;
uint16_t chk_sz = size;
/* initial byte misaligned -- this means the first keycode will be a combination of existing and new data */
if (offset % 2 != 0) {
uint16_t kc = (eeprom_read_byte((uint8_t*)target - 1) << 8) | data[0];
if (kc == RESET)
data[0] = 0xFF;
/* no longer have to check the first byte */
chk_offset += 1;
}
/* final byte misaligned -- this means the last keycode will be a combination of new and existing data */
if ((offset + size) % 2 != 0) {
uint16_t kc = (data[size - 1] << 8) | eeprom_read_byte((uint8_t*)target + size);
if (kc == RESET)
data[size - 1] = 0xFF;
/* no longer have to check the last byte */
chk_sz -= 1;
}
/* check the entire array, replace any instances of RESET with invalid keycode 0xFFFF */
for (uint16_t i = chk_offset; i < chk_sz; i += 2) {
uint16_t kc = (data[i] << 8) | data[i + 1];
if (kc == RESET) {
data[i] = 0xFF;
data[i + 1] = 0xFF;
}
}
}
#endif
#endif
for (uint16_t i = 0; i < size; i++) {
if (offset + i < dynamic_keymap_eeprom_size) {
eeprom_update_byte(target, *source);
}
source++;
target++;
}
}
#ifdef VIAL_ENCODERS_ENABLE
extern uint16_t g_vial_magic_keycode_override;
#endif
// This overrides the one in quantum/keymap_common.c
uint16_t keymap_key_to_keycode(uint8_t layer, keypos_t key) {
#ifdef VIAL_ENABLE
/* Disable any keycode processing while unlocking */
if (vial_unlock_in_progress)
return KC_NO;
#endif
#ifdef VIAL_ENCODERS_ENABLE
if (key.row == VIAL_ENCODER_MATRIX_MAGIC && key.col == VIAL_ENCODER_MATRIX_MAGIC)
return g_vial_magic_keycode_override;
#endif
if (layer < DYNAMIC_KEYMAP_LAYER_COUNT && key.row < MATRIX_ROWS && key.col < MATRIX_COLS) {
return dynamic_keymap_get_keycode(layer, key.row, key.col);
} else {
return KC_NO;
}
}
uint8_t dynamic_keymap_macro_get_count(void) { return DYNAMIC_KEYMAP_MACRO_COUNT; }
uint16_t dynamic_keymap_macro_get_buffer_size(void) { return DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE; }
void dynamic_keymap_macro_get_buffer(uint16_t offset, uint16_t size, uint8_t *data) {
void * source = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + offset);
uint8_t *target = data;
for (uint16_t i = 0; i < size; i++) {
if (offset + i < DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE) {
*target = eeprom_read_byte(source);
} else {
*target = 0x00;
}
source++;
target++;
}
}
void dynamic_keymap_macro_set_buffer(uint16_t offset, uint16_t size, uint8_t *data) {
void * target = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + offset);
uint8_t *source = data;
for (uint16_t i = 0; i < size; i++) {
if (offset + i < DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE) {
eeprom_update_byte(target, *source);
}
source++;
target++;
}
}
void dynamic_keymap_macro_reset(void) {
void *p = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR);
void *end = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE);
while (p != end) {
eeprom_update_byte(p, 0);
++p;
}
}
void dynamic_keymap_macro_send(uint8_t id) {
if (id >= DYNAMIC_KEYMAP_MACRO_COUNT) {
return;
}
// Check the last byte of the buffer.
// If it's not zero, then we are in the middle
// of buffer writing, possibly an aborted buffer
// write. So do nothing.
void *p = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE - 1);
if (eeprom_read_byte(p) != 0) {
return;
}
// Skip N null characters
// p will then point to the Nth macro
p = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR);
void *end = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE);
while (id > 0) {
// If we are past the end of the buffer, then the buffer
// contents are garbage, i.e. there were not DYNAMIC_KEYMAP_MACRO_COUNT
// nulls in the buffer.
if (p == end) {
return;
}
if (eeprom_read_byte(p) == 0) {
--id;
}
++p;
}
// Send the macro string one or three chars at a time
// by making temporary 1 or 3 char strings
char data[4] = {0, 0, 0, 0};
// We already checked there was a null at the end of
// the buffer, so this cannot go past the end
while (1) {
data[0] = eeprom_read_byte(p++);
data[1] = 0;
// Stop at the null terminator of this macro string
if (data[0] == 0) {
break;
}
if (data[0] == SS_QMK_PREFIX) {
// If the char is magic, process it as indicated by the next character
// (tap, down, up, delay)
data[1] = eeprom_read_byte(p++);
if (data[1] == 0)
break;
if (data[1] == SS_TAP_CODE || data[1] == SS_DOWN_CODE || data[1] == SS_UP_CODE) {
// For tap, down, up, just stuff it into the array and send_string it
data[2] = eeprom_read_byte(p++);
if (data[2] != 0)
send_string(data);
} else if (data[1] == SS_DELAY_CODE) {
// For delay, decode the delay and wait_ms for that amount
uint8_t d0 = eeprom_read_byte(p++);
uint8_t d1 = eeprom_read_byte(p++);
if (d0 == 0 || d1 == 0)
break;
// we cannot use 0 for these, need to subtract 1 and use 255 instead of 256 for delay calculation
int ms = (d0 - 1) + (d1 - 1) * 255;
while (ms--) wait_ms(1);
}
} else {
// If the char wasn't magic, just send it
send_string(data);
}
}
}