qmk-keychron-q3-colemak-dh/tmk_core/protocol/arm_atsam/clks.c

437 lines
14 KiB
C

/*
Copyright 2018 Massdrop Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "arm_atsam_protocol.h"
#include <string.h>
volatile clk_t system_clks;
volatile uint64_t ms_clk;
uint32_t usec_delay_mult;
#define USEC_DELAY_LOOP_CYCLES 3 // Sum of instruction cycles in us delay loop
const uint32_t sercom_apbbase[] = {(uint32_t)SERCOM0, (uint32_t)SERCOM1, (uint32_t)SERCOM2, (uint32_t)SERCOM3, (uint32_t)SERCOM4, (uint32_t)SERCOM5};
const uint8_t sercom_pchan[] = {7, 8, 23, 24, 34, 35};
#define USE_DPLL_IND 0
#define USE_DPLL_DEF GCLK_SOURCE_DPLL0
void CLK_oscctrl_init(void) {
Oscctrl *posctrl = OSCCTRL;
Gclk * pgclk = GCLK;
DBGC(DC_CLK_OSC_INIT_BEGIN);
// default setup on por
system_clks.freq_dfll = FREQ_DFLL_DEFAULT;
system_clks.freq_gclk[0] = system_clks.freq_dfll;
// configure and startup 16MHz xosc0
posctrl->XOSCCTRL[0].bit.ENABLE = 0;
posctrl->XOSCCTRL[0].bit.STARTUP = 0xD;
posctrl->XOSCCTRL[0].bit.ENALC = 1;
posctrl->XOSCCTRL[0].bit.IMULT = 5;
posctrl->XOSCCTRL[0].bit.IPTAT = 3;
posctrl->XOSCCTRL[0].bit.ONDEMAND = 0;
posctrl->XOSCCTRL[0].bit.XTALEN = 1;
posctrl->XOSCCTRL[0].bit.ENABLE = 1;
while (posctrl->STATUS.bit.XOSCRDY0 == 0) {
DBGC(DC_CLK_OSC_INIT_XOSC0_SYNC);
}
system_clks.freq_xosc0 = FREQ_XOSC0;
// configure and startup DPLL
posctrl->Dpll[USE_DPLL_IND].DPLLCTRLA.bit.ENABLE = 0;
while (posctrl->Dpll[USE_DPLL_IND].DPLLSYNCBUSY.bit.ENABLE) {
DBGC(DC_CLK_OSC_INIT_DPLL_SYNC_DISABLE);
}
posctrl->Dpll[USE_DPLL_IND].DPLLCTRLB.bit.REFCLK = 2; // select XOSC0 (16MHz)
posctrl->Dpll[USE_DPLL_IND].DPLLCTRLB.bit.DIV = 7; // 16 MHz / (2 * (7 + 1)) = 1 MHz
posctrl->Dpll[USE_DPLL_IND].DPLLRATIO.bit.LDR = PLL_RATIO; // 1 MHz * (PLL_RATIO(47) + 1) = 48MHz
while (posctrl->Dpll[USE_DPLL_IND].DPLLSYNCBUSY.bit.DPLLRATIO) {
DBGC(DC_CLK_OSC_INIT_DPLL_SYNC_RATIO);
}
posctrl->Dpll[USE_DPLL_IND].DPLLCTRLA.bit.ONDEMAND = 0;
posctrl->Dpll[USE_DPLL_IND].DPLLCTRLA.bit.ENABLE = 1;
while (posctrl->Dpll[USE_DPLL_IND].DPLLSYNCBUSY.bit.ENABLE) {
DBGC(DC_CLK_OSC_INIT_DPLL_SYNC_ENABLE);
}
while (posctrl->Dpll[USE_DPLL_IND].DPLLSTATUS.bit.LOCK == 0) {
DBGC(DC_CLK_OSC_INIT_DPLL_WAIT_LOCK);
}
while (posctrl->Dpll[USE_DPLL_IND].DPLLSTATUS.bit.CLKRDY == 0) {
DBGC(DC_CLK_OSC_INIT_DPLL_WAIT_CLKRDY);
}
system_clks.freq_dpll[0] = (system_clks.freq_xosc0 / 2 / (posctrl->Dpll[USE_DPLL_IND].DPLLCTRLB.bit.DIV + 1)) * (posctrl->Dpll[USE_DPLL_IND].DPLLRATIO.bit.LDR + 1);
// change gclk0 to DPLL
pgclk->GENCTRL[GEN_DPLL0].bit.SRC = USE_DPLL_DEF;
while (pgclk->SYNCBUSY.bit.GENCTRL0) {
DBGC(DC_CLK_OSC_INIT_GCLK_SYNC_GENCTRL0);
}
system_clks.freq_gclk[0] = system_clks.freq_dpll[0];
usec_delay_mult = system_clks.freq_gclk[0] / (USEC_DELAY_LOOP_CYCLES * 1000000);
if (usec_delay_mult < 1) usec_delay_mult = 1; // Never allow a multiplier of zero
DBGC(DC_CLK_OSC_INIT_COMPLETE);
}
// configure for 1MHz (1 usec timebase)
// call CLK_set_gclk_freq(GEN_TC45, FREQ_TC45_DEFAULT);
uint32_t CLK_set_gclk_freq(uint8_t gclkn, uint32_t freq) {
Gclk *pgclk = GCLK;
DBGC(DC_CLK_SET_GCLK_FREQ_BEGIN);
while (pgclk->SYNCBUSY.vec.GENCTRL) {
DBGC(DC_CLK_SET_GCLK_FREQ_SYNC_1);
}
pgclk->GENCTRL[gclkn].bit.SRC = USE_DPLL_DEF;
while (pgclk->SYNCBUSY.vec.GENCTRL) {
DBGC(DC_CLK_SET_GCLK_FREQ_SYNC_2);
}
pgclk->GENCTRL[gclkn].bit.DIV = (uint8_t)(system_clks.freq_dpll[0] / freq);
while (pgclk->SYNCBUSY.vec.GENCTRL) {
DBGC(DC_CLK_SET_GCLK_FREQ_SYNC_3);
}
pgclk->GENCTRL[gclkn].bit.DIVSEL = 0;
while (pgclk->SYNCBUSY.vec.GENCTRL) {
DBGC(DC_CLK_SET_GCLK_FREQ_SYNC_4);
}
pgclk->GENCTRL[gclkn].bit.GENEN = 1;
while (pgclk->SYNCBUSY.vec.GENCTRL) {
DBGC(DC_CLK_SET_GCLK_FREQ_SYNC_5);
}
system_clks.freq_gclk[gclkn] = system_clks.freq_dpll[0] / pgclk->GENCTRL[gclkn].bit.DIV;
DBGC(DC_CLK_SET_GCLK_FREQ_COMPLETE);
return system_clks.freq_gclk[gclkn];
}
void CLK_init_osc(void) {
uint8_t gclkn = GEN_OSC0;
Gclk * pgclk = GCLK;
DBGC(DC_CLK_INIT_OSC_BEGIN);
while (pgclk->SYNCBUSY.vec.GENCTRL) {
DBGC(DC_CLK_INIT_OSC_SYNC_1);
}
pgclk->GENCTRL[gclkn].bit.SRC = GCLK_SOURCE_XOSC0;
while (pgclk->SYNCBUSY.vec.GENCTRL) {
DBGC(DC_CLK_INIT_OSC_SYNC_2);
}
pgclk->GENCTRL[gclkn].bit.DIV = 1;
while (pgclk->SYNCBUSY.vec.GENCTRL) {
DBGC(DC_CLK_INIT_OSC_SYNC_3);
}
pgclk->GENCTRL[gclkn].bit.DIVSEL = 0;
while (pgclk->SYNCBUSY.vec.GENCTRL) {
DBGC(DC_CLK_INIT_OSC_SYNC_4);
}
pgclk->GENCTRL[gclkn].bit.GENEN = 1;
while (pgclk->SYNCBUSY.vec.GENCTRL) {
DBGC(DC_CLK_INIT_OSC_SYNC_5);
}
system_clks.freq_gclk[gclkn] = system_clks.freq_xosc0;
DBGC(DC_CLK_INIT_OSC_COMPLETE);
}
void CLK_reset_time(void) {
Tc *ptc4 = TC4;
Tc *ptc0 = TC0;
ms_clk = 0;
DBGC(DC_CLK_RESET_TIME_BEGIN);
// stop counters
ptc4->COUNT16.CTRLA.bit.ENABLE = 0;
while (ptc4->COUNT16.SYNCBUSY.bit.ENABLE) {
}
ptc0->COUNT32.CTRLA.bit.ENABLE = 0;
while (ptc0->COUNT32.SYNCBUSY.bit.ENABLE) {
}
// zero counters
ptc4->COUNT16.COUNT.reg = 0;
while (ptc4->COUNT16.SYNCBUSY.bit.COUNT) {
}
ptc0->COUNT32.COUNT.reg = 0;
while (ptc0->COUNT32.SYNCBUSY.bit.COUNT) {
}
// start counters
ptc0->COUNT32.CTRLA.bit.ENABLE = 1;
while (ptc0->COUNT32.SYNCBUSY.bit.ENABLE) {
}
ptc4->COUNT16.CTRLA.bit.ENABLE = 1;
while (ptc4->COUNT16.SYNCBUSY.bit.ENABLE) {
}
DBGC(DC_CLK_RESET_TIME_COMPLETE);
}
void TC4_Handler() {
if (TC4->COUNT16.INTFLAG.bit.MC0) {
TC4->COUNT16.INTFLAG.reg = TC_INTENCLR_MC0;
ms_clk++;
}
}
uint32_t CLK_enable_timebase(void) {
Gclk * pgclk = GCLK;
Mclk * pmclk = MCLK;
Tc * ptc4 = TC4;
Tc * ptc0 = TC0;
Evsys *pevsys = EVSYS;
DBGC(DC_CLK_ENABLE_TIMEBASE_BEGIN);
// gclk2 highspeed time base
CLK_set_gclk_freq(GEN_TC45, FREQ_TC45_DEFAULT);
CLK_init_osc();
// unmask TC4, sourcegclk2 to TC4
pmclk->APBCMASK.bit.TC4_ = 1;
pgclk->PCHCTRL[TC4_GCLK_ID].bit.GEN = GEN_TC45;
pgclk->PCHCTRL[TC4_GCLK_ID].bit.CHEN = 1;
// configure TC4
DBGC(DC_CLK_ENABLE_TIMEBASE_TC4_BEGIN);
ptc4->COUNT16.CTRLA.bit.ENABLE = 0;
while (ptc4->COUNT16.SYNCBUSY.bit.ENABLE) {
DBGC(DC_CLK_ENABLE_TIMEBASE_TC4_SYNC_DISABLE);
}
ptc4->COUNT16.CTRLA.bit.SWRST = 1;
while (ptc4->COUNT16.SYNCBUSY.bit.SWRST) {
DBGC(DC_CLK_ENABLE_TIMEBASE_TC4_SYNC_SWRST_1);
}
while (ptc4->COUNT16.CTRLA.bit.SWRST) {
DBGC(DC_CLK_ENABLE_TIMEBASE_TC4_SYNC_SWRST_2);
}
// CTRLA defaults
// CTRLB as default, counting up
ptc4->COUNT16.CTRLBCLR.reg = 5;
while (ptc4->COUNT16.SYNCBUSY.bit.CTRLB) {
DBGC(DC_CLK_ENABLE_TIMEBASE_TC4_SYNC_CLTRB);
}
ptc4->COUNT16.CC[0].reg = 999;
while (ptc4->COUNT16.SYNCBUSY.bit.CC0) {
DBGC(DC_CLK_ENABLE_TIMEBASE_TC4_SYNC_CC0);
}
// ptc4->COUNT16.DBGCTRL.bit.DBGRUN = 1;
// wave mode
ptc4->COUNT16.WAVE.bit.WAVEGEN = 1; // MFRQ match frequency mode, toggle each CC match
// generate event for next stage
ptc4->COUNT16.EVCTRL.bit.MCEO0 = 1;
NVIC_EnableIRQ(TC4_IRQn);
ptc4->COUNT16.INTENSET.bit.MC0 = 1;
DBGC(DC_CLK_ENABLE_TIMEBASE_TC4_COMPLETE);
// unmask TC0,1, sourcegclk2 to TC0,1
pmclk->APBAMASK.bit.TC0_ = 1;
pgclk->PCHCTRL[TC0_GCLK_ID].bit.GEN = GEN_TC45;
pgclk->PCHCTRL[TC0_GCLK_ID].bit.CHEN = 1;
pmclk->APBAMASK.bit.TC1_ = 1;
pgclk->PCHCTRL[TC1_GCLK_ID].bit.GEN = GEN_TC45;
pgclk->PCHCTRL[TC1_GCLK_ID].bit.CHEN = 1;
// configure TC0
DBGC(DC_CLK_ENABLE_TIMEBASE_TC0_BEGIN);
ptc0->COUNT32.CTRLA.bit.ENABLE = 0;
while (ptc0->COUNT32.SYNCBUSY.bit.ENABLE) {
DBGC(DC_CLK_ENABLE_TIMEBASE_TC0_SYNC_DISABLE);
}
ptc0->COUNT32.CTRLA.bit.SWRST = 1;
while (ptc0->COUNT32.SYNCBUSY.bit.SWRST) {
DBGC(DC_CLK_ENABLE_TIMEBASE_TC0_SYNC_SWRST_1);
}
while (ptc0->COUNT32.CTRLA.bit.SWRST) {
DBGC(DC_CLK_ENABLE_TIMEBASE_TC0_SYNC_SWRST_2);
}
// CTRLA as default
ptc0->COUNT32.CTRLA.bit.MODE = 2; // 32 bit mode
ptc0->COUNT32.EVCTRL.bit.TCEI = 1; // enable incoming events
ptc0->COUNT32.EVCTRL.bit.EVACT = 2; // count events
DBGC(DC_CLK_ENABLE_TIMEBASE_TC0_COMPLETE);
DBGC(DC_CLK_ENABLE_TIMEBASE_EVSYS_BEGIN);
// configure event system
pmclk->APBBMASK.bit.EVSYS_ = 1;
pgclk->PCHCTRL[EVSYS_GCLK_ID_0].bit.GEN = GEN_TC45;
pgclk->PCHCTRL[EVSYS_GCLK_ID_0].bit.CHEN = 1;
pevsys->USER[44].reg = EVSYS_ID_USER_PORT_EV_0; // TC0 will get event channel 0
pevsys->Channel[0].CHANNEL.bit.EDGSEL = EVSYS_CHANNEL_EDGSEL_RISING_EDGE_Val; // Rising edge
pevsys->Channel[0].CHANNEL.bit.PATH = EVSYS_CHANNEL_PATH_SYNCHRONOUS_Val; // Synchronous
pevsys->Channel[0].CHANNEL.bit.EVGEN = EVSYS_ID_GEN_TC4_MCX_0; // TC4 MC0
DBGC(DC_CLK_ENABLE_TIMEBASE_EVSYS_COMPLETE);
CLK_reset_time();
ADC0_clock_init();
DBGC(DC_CLK_ENABLE_TIMEBASE_COMPLETE);
return 0;
}
void CLK_delay_us(uint32_t usec) {
asm("CBZ R0, return\n\t" // If usec == 0, branch to return label
);
asm("MULS R0, %0\n\t" // Multiply R0(usec) by usec_delay_mult and store in R0
".balign 16\n\t" // Ensure loop is aligned for fastest performance
"loop: SUBS R0, #1\n\t" // Subtract 1 from R0 and update flags (1 cycle)
"BNE loop\n\t" // Branch if non-zero to loop label (2 cycles) NOTE: USEC_DELAY_LOOP_CYCLES is the sum of loop cycles
"return:\n\t" // Return label
: // No output registers
: "r"(usec_delay_mult) // For %0
);
// Note: BX LR generated
}
void CLK_delay_ms(uint64_t msec) {
msec += timer_read64();
while (msec > timer_read64()) {
}
}
void clk_enable_sercom_apbmask(int sercomn) {
Mclk *pmclk = MCLK;
switch (sercomn) {
case 0:
pmclk->APBAMASK.bit.SERCOM0_ = 1;
break;
case 1:
pmclk->APBAMASK.bit.SERCOM1_ = 1;
break;
case 2:
pmclk->APBBMASK.bit.SERCOM2_ = 1;
break;
case 3:
pmclk->APBBMASK.bit.SERCOM3_ = 1;
break;
default:
break;
}
}
// call CLK_oscctrl_init first
// call CLK_set_spi_freq(CHAN_SERCOM_SPI, FREQ_SPI_DEFAULT);
uint32_t CLK_set_spi_freq(uint8_t sercomn, uint32_t freq) {
DBGC(DC_CLK_SET_SPI_FREQ_BEGIN);
Gclk * pgclk = GCLK;
Sercom *psercom = (Sercom *)sercom_apbbase[sercomn];
clk_enable_sercom_apbmask(sercomn);
// all gclk0 for now
pgclk->PCHCTRL[sercom_pchan[sercomn]].bit.GEN = 0;
pgclk->PCHCTRL[sercom_pchan[sercomn]].bit.CHEN = 1;
psercom->I2CM.CTRLA.bit.SWRST = 1;
while (psercom->I2CM.SYNCBUSY.bit.SWRST) {
}
while (psercom->I2CM.CTRLA.bit.SWRST) {
}
psercom->SPI.BAUD.reg = (uint8_t)(system_clks.freq_gclk[0] / 2 / freq - 1);
system_clks.freq_spi = system_clks.freq_gclk[0] / 2 / (psercom->SPI.BAUD.reg + 1);
system_clks.freq_sercom[sercomn] = system_clks.freq_spi;
DBGC(DC_CLK_SET_SPI_FREQ_COMPLETE);
return system_clks.freq_spi;
}
// call CLK_oscctrl_init first
// call CLK_set_i2c0_freq(CHAN_SERCOM_I2C0, FREQ_I2C0_DEFAULT);
uint32_t CLK_set_i2c0_freq(uint8_t sercomn, uint32_t freq) {
DBGC(DC_CLK_SET_I2C0_FREQ_BEGIN);
Gclk * pgclk = GCLK;
Sercom *psercom = (Sercom *)sercom_apbbase[sercomn];
clk_enable_sercom_apbmask(sercomn);
// all gclk0 for now
pgclk->PCHCTRL[sercom_pchan[sercomn]].bit.GEN = 0;
pgclk->PCHCTRL[sercom_pchan[sercomn]].bit.CHEN = 1;
psercom->I2CM.CTRLA.bit.SWRST = 1;
while (psercom->I2CM.SYNCBUSY.bit.SWRST) {
}
while (psercom->I2CM.CTRLA.bit.SWRST) {
}
psercom->I2CM.BAUD.bit.BAUD = (uint8_t)(system_clks.freq_gclk[0] / 2 / freq - 1);
system_clks.freq_i2c0 = system_clks.freq_gclk[0] / 2 / (psercom->I2CM.BAUD.bit.BAUD + 1);
system_clks.freq_sercom[sercomn] = system_clks.freq_i2c0;
DBGC(DC_CLK_SET_I2C0_FREQ_COMPLETE);
return system_clks.freq_i2c0;
}
// call CLK_oscctrl_init first
// call CLK_set_i2c1_freq(CHAN_SERCOM_I2C1, FREQ_I2C1_DEFAULT);
uint32_t CLK_set_i2c1_freq(uint8_t sercomn, uint32_t freq) {
DBGC(DC_CLK_SET_I2C1_FREQ_BEGIN);
Gclk * pgclk = GCLK;
Sercom *psercom = (Sercom *)sercom_apbbase[sercomn];
clk_enable_sercom_apbmask(sercomn);
// all gclk0 for now
pgclk->PCHCTRL[sercom_pchan[sercomn]].bit.GEN = 0;
pgclk->PCHCTRL[sercom_pchan[sercomn]].bit.CHEN = 1;
psercom->I2CM.CTRLA.bit.SWRST = 1;
while (psercom->I2CM.SYNCBUSY.bit.SWRST) {
}
while (psercom->I2CM.CTRLA.bit.SWRST) {
}
psercom->I2CM.BAUD.bit.BAUD = (uint8_t)(system_clks.freq_gclk[0] / 2 / freq - 10);
system_clks.freq_i2c1 = system_clks.freq_gclk[0] / 2 / (psercom->I2CM.BAUD.bit.BAUD + 10);
system_clks.freq_sercom[sercomn] = system_clks.freq_i2c1;
DBGC(DC_CLK_SET_I2C1_FREQ_COMPLETE);
return system_clks.freq_i2c1;
}
void CLK_init(void) {
DBGC(DC_CLK_INIT_BEGIN);
memset((void *)&system_clks, 0, sizeof(system_clks));
CLK_oscctrl_init();
CLK_enable_timebase();
DBGC(DC_CLK_INIT_COMPLETE);
}