qmk-keychron-q3-colemak-dh/quantum/process_keycode/process_joystick.c

150 lines
5.9 KiB
C

#include "joystick.h"
#include "process_joystick.h"
#include "analog.h"
#include <string.h>
#include <math.h>
bool process_joystick(uint16_t keycode, keyrecord_t *record) {
switch (keycode) {
case JS_BUTTON0 ... JS_BUTTON_MAX:
if (record->event.pressed) {
register_joystick_button(keycode - JS_BUTTON0);
} else {
unregister_joystick_button(keycode - JS_BUTTON0);
}
return false;
}
return true;
}
__attribute__((weak)) void joystick_task(void) {
if (process_joystick_analogread()) {
joystick_flush();
}
}
uint16_t savePinState(pin_t pin) {
#ifdef __AVR__
uint8_t pinNumber = pin & 0xF;
return ((PORTx_ADDRESS(pin) >> pinNumber) & 0x1) << 1 | ((DDRx_ADDRESS(pin) >> pinNumber) & 0x1);
#elif defined(PROTOCOL_CHIBIOS)
/*
The pin configuration is backed up in the following format :
bit 15 9 8 7 6 5 4 3 2 1 0
|unused|ODR|IDR|PUPDR|OSPEEDR|OTYPER|MODER|
*/
return ((PAL_PORT(pin)->MODER >> (2 * PAL_PAD(pin))) & 0x3) | (((PAL_PORT(pin)->OTYPER >> (1 * PAL_PAD(pin))) & 0x1) << 2) | (((PAL_PORT(pin)->OSPEEDR >> (2 * PAL_PAD(pin))) & 0x3) << 3) | (((PAL_PORT(pin)->PUPDR >> (2 * PAL_PAD(pin))) & 0x3) << 5) | (((PAL_PORT(pin)->IDR >> (1 * PAL_PAD(pin))) & 0x1) << 7) | (((PAL_PORT(pin)->ODR >> (1 * PAL_PAD(pin))) & 0x1) << 8);
#else
return 0;
#endif
}
void restorePinState(pin_t pin, uint16_t restoreState) {
#if defined(PROTOCOL_LUFA)
uint8_t pinNumber = pin & 0xF;
PORTx_ADDRESS(pin) = (PORTx_ADDRESS(pin) & ~_BV(pinNumber)) | (((restoreState >> 1) & 0x1) << pinNumber);
DDRx_ADDRESS(pin) = (DDRx_ADDRESS(pin) & ~_BV(pinNumber)) | ((restoreState & 0x1) << pinNumber);
#elif defined(PROTOCOL_CHIBIOS)
PAL_PORT(pin)->MODER = (PAL_PORT(pin)->MODER & ~(0x3 << (2 * PAL_PAD(pin)))) | (restoreState & 0x3) << (2 * PAL_PAD(pin));
PAL_PORT(pin)->OTYPER = (PAL_PORT(pin)->OTYPER & ~(0x1 << (1 * PAL_PAD(pin)))) | ((restoreState >> 2) & 0x1) << (1 * PAL_PAD(pin));
PAL_PORT(pin)->OSPEEDR = (PAL_PORT(pin)->OSPEEDR & ~(0x3 << (2 * PAL_PAD(pin)))) | ((restoreState >> 3) & 0x3) << (2 * PAL_PAD(pin));
PAL_PORT(pin)->PUPDR = (PAL_PORT(pin)->PUPDR & ~(0x3 << (2 * PAL_PAD(pin)))) | ((restoreState >> 5) & 0x3) << (2 * PAL_PAD(pin));
PAL_PORT(pin)->IDR = (PAL_PORT(pin)->IDR & ~(0x1 << (1 * PAL_PAD(pin)))) | ((restoreState >> 7) & 0x1) << (1 * PAL_PAD(pin));
PAL_PORT(pin)->ODR = (PAL_PORT(pin)->ODR & ~(0x1 << (1 * PAL_PAD(pin)))) | ((restoreState >> 8) & 0x1) << (1 * PAL_PAD(pin));
#else
return;
#endif
}
__attribute__((weak)) bool process_joystick_analogread() {
return process_joystick_analogread_quantum();
}
bool process_joystick_analogread_quantum() {
#if JOYSTICK_AXES_COUNT > 0
for (int axis_index = 0; axis_index < JOYSTICK_AXES_COUNT; ++axis_index) {
if (joystick_axes[axis_index].input_pin == JS_VIRTUAL_AXIS) {
continue;
}
// save previous input pin status as well
uint16_t inputSavedState = savePinState(joystick_axes[axis_index].input_pin);
// disable pull-up resistor
writePinLow(joystick_axes[axis_index].input_pin);
// if pin was a pull-up input, we need to uncharge it by turning it low
// before making it a low input
setPinOutput(joystick_axes[axis_index].input_pin);
wait_us(10);
// save and apply output pin status
uint16_t outputSavedState = 0;
if (joystick_axes[axis_index].output_pin != JS_VIRTUAL_AXIS) {
// save previous output pin status
outputSavedState = savePinState(joystick_axes[axis_index].output_pin);
setPinOutput(joystick_axes[axis_index].output_pin);
writePinHigh(joystick_axes[axis_index].output_pin);
}
uint16_t groundSavedState = 0;
if (joystick_axes[axis_index].ground_pin != JS_VIRTUAL_AXIS) {
// save previous output pin status
groundSavedState = savePinState(joystick_axes[axis_index].ground_pin);
setPinOutput(joystick_axes[axis_index].ground_pin);
writePinLow(joystick_axes[axis_index].ground_pin);
}
wait_us(10);
setPinInput(joystick_axes[axis_index].input_pin);
wait_us(10);
# if defined(ANALOG_JOYSTICK_ENABLE) && (defined(__AVR__) || defined(PROTOCOL_CHIBIOS))
int16_t axis_val = analogReadPin(joystick_axes[axis_index].input_pin);
# else
// default to resting position
int16_t axis_val = joystick_axes[axis_index].mid_digit;
# endif
// test the converted value against the lower range
int32_t ref = joystick_axes[axis_index].mid_digit;
int32_t range = joystick_axes[axis_index].min_digit;
int32_t ranged_val = ((axis_val - ref) * -JOYSTICK_RESOLUTION) / (range - ref);
if (ranged_val > 0) {
// the value is in the higher range
range = joystick_axes[axis_index].max_digit;
ranged_val = ((axis_val - ref) * JOYSTICK_RESOLUTION) / (range - ref);
}
// clamp the result in the valid range
ranged_val = ranged_val < -JOYSTICK_RESOLUTION ? -JOYSTICK_RESOLUTION : ranged_val;
ranged_val = ranged_val > JOYSTICK_RESOLUTION ? JOYSTICK_RESOLUTION : ranged_val;
if (ranged_val != joystick_status.axes[axis_index]) {
joystick_status.axes[axis_index] = ranged_val;
joystick_status.status |= JS_UPDATED;
}
// restore output, ground and input status
if (joystick_axes[axis_index].output_pin != JS_VIRTUAL_AXIS) {
restorePinState(joystick_axes[axis_index].output_pin, outputSavedState);
}
if (joystick_axes[axis_index].ground_pin != JS_VIRTUAL_AXIS) {
restorePinState(joystick_axes[axis_index].ground_pin, groundSavedState);
}
restorePinState(joystick_axes[axis_index].input_pin, inputSavedState);
}
#endif
return true;
}