qmk-keychron-q3-colemak-dh/drivers/oled/oled_driver.c

532 lines
16 KiB
C

/*
Copyright 2019 Ryan Caltabiano <https://github.com/XScorpion2>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "i2c_master.h"
#include "oled_driver.h"
#include OLED_FONT_H
#include "timer.h"
#include "print.h"
#include <string.h>
#if defined(__AVR__)
#include <avr/io.h>
#include <avr/pgmspace.h>
#elif defined(ESP8266)
#include <pgmspace.h>
#else // defined(ESP8266)
#define PROGMEM
#define memcpy_P(des, src, len) memcpy(des, src, len)
#endif // defined(__AVR__)
// Used commands from spec sheet: https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf
// Fundamental Commands
#define CONTRAST 0x81
#define DISPLAY_ALL_ON 0xA5
#define DISPLAY_ALL_ON_RESUME 0xA4
#define NORMAL_DISPLAY 0xA6
#define DISPLAY_ON 0xAF
#define DISPLAY_OFF 0xAE
// Scrolling Commands
#define ACTIVATE_SCROLL 0x2F
#define DEACTIVATE_SCROLL 0x2E
#define SCROLL_RIGHT 0x26
#define SCROLL_LEFT 0x27
#define SCROLL_RIGHT_UP 0x29
#define SCROLL_LEFT_UP 0x2A
// Addressing Setting Commands
#define MEMORY_MODE 0x20
#define COLUMN_ADDR 0x21
#define PAGE_ADDR 0x22
// Hardware Configuration Commands
#define DISPLAY_START_LINE 0x40
#define SEGMENT_REMAP 0xA0
#define SEGMENT_REMAP_INV 0xA1
#define MULTIPLEX_RATIO 0xA8
#define COM_SCAN_INC 0xC0
#define COM_SCAN_DEC 0xC8
#define DISPLAY_OFFSET 0xD3
#define COM_PINS 0xDA
// Timing & Driving Commands
#define DISPLAY_CLOCK 0xD5
#define PRE_CHARGE_PERIOD 0xD9
#define VCOM_DETECT 0xDB
// Charge Pump Commands
#define CHARGE_PUMP 0x8D
// Misc defines
#define OLED_TIMEOUT 60000
#define OLED_BLOCK_COUNT (sizeof(OLED_BLOCK_TYPE) * 8)
#define OLED_BLOCK_SIZE (OLED_MATRIX_SIZE / OLED_BLOCK_COUNT)
// i2c defines
#define I2C_CMD 0x00
#define I2C_DATA 0x40
#if defined(__AVR__)
// already defined on ARM
#define I2C_TIMEOUT 100
#define I2C_TRANSMIT_P(data) i2c_transmit_P((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), I2C_TIMEOUT)
#else // defined(__AVR__)
#define I2C_TRANSMIT_P(data) i2c_transmit((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), I2C_TIMEOUT)
#endif // defined(__AVR__)
#define I2C_TRANSMIT(data) i2c_transmit((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), I2C_TIMEOUT)
#define I2C_WRITE_REG(mode, data, size) i2c_writeReg((OLED_DISPLAY_ADDRESS << 1), mode, data, size, I2C_TIMEOUT)
#define HAS_FLAGS(bits, flags) ((bits & flags) == flags)
// Display buffer's is the same as the OLED memory layout
// this is so we don't end up with rounding errors with
// parts of the display unusable or don't get cleared correctly
// and also allows for drawing & inverting
uint8_t oled_buffer[OLED_MATRIX_SIZE];
uint8_t* oled_cursor;
OLED_BLOCK_TYPE oled_dirty = 0;
bool oled_initialized = false;
bool oled_active = false;
bool oled_scrolling = false;
uint8_t oled_rotation = 0;
uint8_t oled_rotation_width = 0;
#if !defined(OLED_DISABLE_TIMEOUT)
uint16_t oled_last_activity;
#endif
// Internal variables to reduce math instructions
#if defined(__AVR__)
// identical to i2c_transmit, but for PROGMEM since all initialization is in PROGMEM arrays currently
// probably should move this into i2c_master...
static i2c_status_t i2c_transmit_P(uint8_t address, const uint8_t* data, uint16_t length, uint16_t timeout) {
i2c_status_t status = i2c_start(address | I2C_WRITE, timeout);
for (uint16_t i = 0; i < length && status >= 0; i++) {
status = i2c_write(pgm_read_byte((const char*)data++), timeout);
if (status) break;
}
i2c_stop();
return status;
}
#endif
// Flips the rendering bits for a character at the current cursor position
static void InvertCharacter(uint8_t *cursor)
{
const uint8_t *end = cursor + OLED_FONT_WIDTH;
while (cursor < end) {
*cursor = ~(*cursor);
cursor++;
}
}
bool oled_init(uint8_t rotation) {
oled_rotation = oled_init_user(rotation);
if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
oled_rotation_width = OLED_DISPLAY_WIDTH;
} else {
oled_rotation_width = OLED_DISPLAY_HEIGHT;
}
i2c_init();
static const uint8_t PROGMEM display_setup1[] = {
I2C_CMD,
DISPLAY_OFF,
DISPLAY_CLOCK, 0x80,
MULTIPLEX_RATIO, OLED_DISPLAY_HEIGHT - 1,
DISPLAY_OFFSET, 0x00,
DISPLAY_START_LINE | 0x00,
CHARGE_PUMP, 0x14,
MEMORY_MODE, 0x00, }; // Horizontal addressing mode
if (I2C_TRANSMIT_P(display_setup1) != I2C_STATUS_SUCCESS) {
print("oled_init cmd set 1 failed\n");
return false;
}
if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_180)) {
static const uint8_t PROGMEM display_normal[] = {
I2C_CMD,
SEGMENT_REMAP_INV,
COM_SCAN_DEC };
if (I2C_TRANSMIT_P(display_normal) != I2C_STATUS_SUCCESS) {
print("oled_init cmd normal rotation failed\n");
return false;
}
} else {
static const uint8_t PROGMEM display_flipped[] = {
I2C_CMD,
SEGMENT_REMAP,
COM_SCAN_INC };
if (I2C_TRANSMIT_P(display_flipped) != I2C_STATUS_SUCCESS) {
print("display_flipped failed\n");
return false;
}
}
static const uint8_t PROGMEM display_setup2[] = {
I2C_CMD,
COM_PINS, 0x02,
CONTRAST, 0x8F,
PRE_CHARGE_PERIOD, 0xF1,
VCOM_DETECT, 0x40,
DISPLAY_ALL_ON_RESUME,
NORMAL_DISPLAY,
DEACTIVATE_SCROLL,
DISPLAY_ON };
if (I2C_TRANSMIT_P(display_setup2) != I2C_STATUS_SUCCESS) {
print("display_setup2 failed\n");
return false;
}
oled_clear();
oled_initialized = true;
oled_active = true;
oled_scrolling = false;
return true;
}
__attribute__((weak))
oled_rotation_t oled_init_user(oled_rotation_t rotation) {
return rotation;
}
void oled_clear(void) {
memset(oled_buffer, 0, sizeof(oled_buffer));
oled_cursor = &oled_buffer[0];
oled_dirty = -1; // -1 will be max value as long as display_dirty is unsigned type
}
static void calc_bounds(uint8_t update_start, uint8_t* cmd_array)
{
cmd_array[1] = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_WIDTH;
cmd_array[4] = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_WIDTH;
cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) % OLED_DISPLAY_WIDTH + cmd_array[1];
cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) / OLED_DISPLAY_WIDTH - 1;
}
static void calc_bounds_90(uint8_t update_start, uint8_t* cmd_array)
{
cmd_array[1] = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_HEIGHT * 8;
cmd_array[4] = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_HEIGHT;
cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) / OLED_DISPLAY_HEIGHT * 8 - 1 + cmd_array[1];;
cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) % OLED_DISPLAY_HEIGHT / 8;
}
uint8_t crot(uint8_t a, int8_t n)
{
const uint8_t mask = 0x7;
n &= mask;
return a << n | a >> (-n & mask);
}
static void rotate_90(const uint8_t* src, uint8_t* dest)
{
for (uint8_t i = 0, shift = 7; i < 8; ++i, --shift) {
uint8_t selector = (1 << i);
for (uint8_t j = 0; j < 8; ++j) {
dest[i] |= crot(src[j] & selector, shift - (int8_t)j);
}
}
}
void oled_render(void) {
// Do we have work to do?
if (!oled_dirty || oled_scrolling) {
return;
}
// Find first dirty block
uint8_t update_start = 0;
while (!(oled_dirty & (1 << update_start))) { ++update_start; }
// Set column & page position
static uint8_t display_start[] = {
I2C_CMD,
COLUMN_ADDR, 0, OLED_DISPLAY_WIDTH - 1,
PAGE_ADDR, 0, OLED_DISPLAY_HEIGHT / 8 - 1 };
if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
calc_bounds(update_start, &display_start[1]); // Offset from I2C_CMD byte at the start
} else {
calc_bounds_90(update_start, &display_start[1]); // Offset from I2C_CMD byte at the start
}
// Send column & page position
if (I2C_TRANSMIT(display_start) != I2C_STATUS_SUCCESS) {
print("oled_render offset command failed\n");
return;
}
if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
// Send render data chunk as is
if (I2C_WRITE_REG(I2C_DATA, &oled_buffer[OLED_BLOCK_SIZE * update_start], OLED_BLOCK_SIZE) != I2C_STATUS_SUCCESS) {
print("oled_render data failed\n");
return;
}
} else {
// Rotate the render chunks
const static uint8_t source_map[] = OLED_SOURCE_MAP;
const static uint8_t target_map[] = OLED_TARGET_MAP;
static uint8_t temp_buffer[OLED_BLOCK_SIZE];
memset(temp_buffer, 0, sizeof(temp_buffer));
for(uint8_t i = 0; i < sizeof(source_map); ++i) {
rotate_90(&oled_buffer[OLED_BLOCK_SIZE * update_start + source_map[i]], &temp_buffer[target_map[i]]);
}
// Send render data chunk after rotating
if (I2C_WRITE_REG(I2C_DATA, &temp_buffer[0], OLED_BLOCK_SIZE) != I2C_STATUS_SUCCESS) {
print("oled_render data failed\n");
return;
}
}
// Turn on display if it is off
oled_on();
// Clear dirty flag
oled_dirty &= ~(1 << update_start);
}
void oled_set_cursor(uint8_t col, uint8_t line) {
uint16_t index = line * oled_rotation_width + col * OLED_FONT_WIDTH;
// Out of bounds?
if (index >= OLED_MATRIX_SIZE) {
index = 0;
}
oled_cursor = &oled_buffer[index];
}
void oled_advance_page(bool clearPageRemainder) {
uint16_t index = oled_cursor - &oled_buffer[0];
uint8_t remaining = oled_rotation_width - (index % oled_rotation_width);
if (clearPageRemainder) {
// Remaining Char count
remaining = remaining / OLED_FONT_WIDTH;
// Write empty character until next line
while (remaining--)
oled_write_char(' ', false);
} else {
// Next page index out of bounds?
if (index + remaining >= OLED_MATRIX_SIZE) {
index = 0;
remaining = 0;
}
oled_cursor = &oled_buffer[index + remaining];
}
}
void oled_advance_char(void) {
uint16_t nextIndex = oled_cursor - &oled_buffer[0] + OLED_FONT_WIDTH;
uint8_t remainingSpace = oled_rotation_width - (nextIndex % oled_rotation_width);
// Do we have enough space on the current line for the next character
if (remainingSpace < OLED_FONT_WIDTH) {
nextIndex += remainingSpace;
}
// Did we go out of bounds
if (nextIndex >= OLED_MATRIX_SIZE) {
nextIndex = 0;
}
// Update cursor position
oled_cursor = &oled_buffer[nextIndex];
}
// Main handler that writes character data to the display buffer
void oled_write_char(const char data, bool invert) {
// Advance to the next line if newline
if (data == '\n') {
// Old source wrote ' ' until end of line...
oled_advance_page(true);
return;
}
// copy the current render buffer to check for dirty after
static uint8_t oled_temp_buffer[OLED_FONT_WIDTH];
memcpy(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH);
// set the reder buffer data
uint8_t cast_data = (uint8_t)data; // font based on unsigned type for index
if (cast_data < OLED_FONT_START || cast_data > OLED_FONT_END) {
memset(oled_cursor, 0x00, OLED_FONT_WIDTH);
} else {
const uint8_t *glyph = &font[(cast_data - OLED_FONT_START) * OLED_FONT_WIDTH];
memcpy_P(oled_cursor, glyph, OLED_FONT_WIDTH);
}
// Invert if needed
if (invert) {
InvertCharacter(oled_cursor);
}
// Dirty check
if (memcmp(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH)) {
uint16_t index = oled_cursor - &oled_buffer[0];
oled_dirty |= (1 << (index / OLED_BLOCK_SIZE));
// Edgecase check if the written data spans the 2 chunks
oled_dirty |= (1 << ((index + OLED_FONT_WIDTH) / OLED_BLOCK_SIZE));
}
// Finally move to the next char
oled_advance_char();
}
void oled_write(const char *data, bool invert) {
const char *end = data + strlen(data);
while (data < end) {
oled_write_char(*data, invert);
data++;
}
}
void oled_write_ln(const char *data, bool invert) {
oled_write(data, invert);
oled_advance_page(true);
}
#if defined(__AVR__)
void oled_write_P(const char *data, bool invert) {
uint8_t c = pgm_read_byte(data);
while (c != 0) {
oled_write_char(c, invert);
c = pgm_read_byte(++data);
}
}
void oled_write_ln_P(const char *data, bool invert) {
oled_write_P(data, invert);
oled_advance_page(true);
}
#endif // defined(__AVR__)
bool oled_on(void) {
#if !defined(OLED_DISABLE_TIMEOUT)
oled_last_activity = timer_read();
#endif
static const uint8_t PROGMEM display_on[] = { I2C_CMD, DISPLAY_ON };
if (!oled_active) {
if (I2C_TRANSMIT_P(display_on) != I2C_STATUS_SUCCESS) {
print("oled_on cmd failed\n");
return oled_active;
}
oled_active = true;
}
return oled_active;
}
bool oled_off(void) {
static const uint8_t PROGMEM display_off[] = { I2C_CMD, DISPLAY_OFF };
if (oled_active) {
if (I2C_TRANSMIT_P(display_off) != I2C_STATUS_SUCCESS) {
print("oled_off cmd failed\n");
return oled_active;
}
oled_active = false;
}
return !oled_active;
}
bool oled_scroll_right(void) {
// Dont enable scrolling if we need to update the display
// This prevents scrolling of bad data from starting the scroll too early after init
if (!oled_dirty && !oled_scrolling) {
static const uint8_t PROGMEM display_scroll_right[] = {
I2C_CMD, SCROLL_RIGHT, 0x00, 0x00, 0x00, 0x0F, 0x00, 0xFF, ACTIVATE_SCROLL };
if (I2C_TRANSMIT_P(display_scroll_right) != I2C_STATUS_SUCCESS) {
print("oled_scroll_right cmd failed\n");
return oled_scrolling;
}
oled_scrolling = true;
}
return oled_scrolling;
}
bool oled_scroll_left(void) {
// Dont enable scrolling if we need to update the display
// This prevents scrolling of bad data from starting the scroll too early after init
if (!oled_dirty && !oled_scrolling) {
static const uint8_t PROGMEM display_scroll_left[] = {
I2C_CMD, SCROLL_LEFT, 0x00, 0x00, 0x00, 0x0F, 0x00, 0xFF, ACTIVATE_SCROLL };
if (I2C_TRANSMIT_P(display_scroll_left) != I2C_STATUS_SUCCESS) {
print("oled_scroll_left cmd failed\n");
return oled_scrolling;
}
oled_scrolling = true;
}
return oled_scrolling;
}
bool oled_scroll_off(void) {
if (oled_scrolling) {
static const uint8_t PROGMEM display_scroll_off[] = { I2C_CMD, DEACTIVATE_SCROLL };
if (I2C_TRANSMIT_P(display_scroll_off) != I2C_STATUS_SUCCESS) {
print("oled_scroll_off cmd failed\n");
return oled_scrolling;
}
oled_scrolling = false;
}
return !oled_scrolling;
}
uint8_t oled_max_chars(void) {
if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
return OLED_DISPLAY_WIDTH / OLED_FONT_WIDTH;
}
return OLED_DISPLAY_HEIGHT / OLED_FONT_WIDTH;
}
uint8_t oled_max_lines(void) {
if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
return OLED_DISPLAY_HEIGHT / OLED_FONT_HEIGHT;
}
return OLED_DISPLAY_WIDTH / OLED_FONT_HEIGHT;
}
void oled_task(void) {
if (!oled_initialized) {
return;
}
oled_set_cursor(0, 0);
oled_task_user();
// Smart render system, no need to check for dirty
oled_render();
// Display timeout check
#if !defined(OLED_DISABLE_TIMEOUT)
if (oled_active && timer_elapsed(oled_last_activity) > OLED_TIMEOUT) {
oled_off();
}
#endif
}
__attribute__((weak))
void oled_task_user(void) {
}