qmk-keychron-q3-colemak-dh/drivers/sensors/cirque_pinnacle.c
JohSchneider 6b52c6d83d
Cirque reachable calibration aide (#22803)
Co-authored-by: Stefan Kerkmann <karlk90@pm.me>
Co-authored-by: Johannes <you@example.com>
2024-01-13 00:28:09 -08:00

346 lines
13 KiB
C

// Copyright (c) 2018 Cirque Corp. Restrictions apply. See: www.cirque.com/sw-license
// based on https://github.com/cirque-corp/Cirque_Pinnacle_1CA027/tree/master/Circular_Trackpad
// with modifications and changes for QMK
// refer to documentation: Gen2 and Gen3 (Pinnacle ASIC) at https://www.cirque.com/documentation
#include "cirque_pinnacle.h"
#include "wait.h"
#include "timer.h"
#include <stdlib.h>
#ifndef CIRQUE_PINNACLE_ATTENUATION
# ifdef CIRQUE_PINNACLE_CURVED_OVERLAY
# define CIRQUE_PINNACLE_ATTENUATION EXTREG__TRACK_ADCCONFIG__ADC_ATTENUATE_2X
# else
# define CIRQUE_PINNACLE_ATTENUATION EXTREG__TRACK_ADCCONFIG__ADC_ATTENUATE_4X
# endif
#endif
bool touchpad_init;
uint16_t scale_data = CIRQUE_PINNACLE_DEFAULT_SCALE;
void cirque_pinnacle_clear_flags(void);
void cirque_pinnacle_enable_feed(bool feedEnable);
void RAP_ReadBytes(uint8_t address, uint8_t* data, uint8_t count);
void RAP_Write(uint8_t address, uint8_t data);
#if CIRQUE_PINNACLE_POSITION_MODE
/* Logical Scaling Functions */
// Clips raw coordinates to "reachable" window of sensor
// NOTE: values outside this window can only appear as a result of noise
void ClipCoordinates(pinnacle_data_t* coordinates) {
if (coordinates->xValue < CIRQUE_PINNACLE_X_LOWER) {
coordinates->xValue = CIRQUE_PINNACLE_X_LOWER;
} else if (coordinates->xValue > CIRQUE_PINNACLE_X_UPPER) {
coordinates->xValue = CIRQUE_PINNACLE_X_UPPER;
}
if (coordinates->yValue < CIRQUE_PINNACLE_Y_LOWER) {
coordinates->yValue = CIRQUE_PINNACLE_Y_LOWER;
} else if (coordinates->yValue > CIRQUE_PINNACLE_Y_UPPER) {
coordinates->yValue = CIRQUE_PINNACLE_Y_UPPER;
}
}
#endif
uint16_t cirque_pinnacle_get_scale(void) {
return scale_data;
}
void cirque_pinnacle_set_scale(uint16_t scale) {
scale_data = scale;
}
// Scales data to desired X & Y resolution
void cirque_pinnacle_scale_data(pinnacle_data_t* coordinates, uint16_t xResolution, uint16_t yResolution) {
#if CIRQUE_PINNACLE_POSITION_MODE
uint32_t xTemp = 0;
uint32_t yTemp = 0;
ClipCoordinates(coordinates);
xTemp = coordinates->xValue;
yTemp = coordinates->yValue;
// translate coordinates to (0, 0) reference by subtracting edge-offset
xTemp -= CIRQUE_PINNACLE_X_LOWER;
yTemp -= CIRQUE_PINNACLE_Y_LOWER;
// scale coordinates to (xResolution, yResolution) range
coordinates->xValue = (uint16_t)(xTemp * xResolution / CIRQUE_PINNACLE_X_RANGE);
coordinates->yValue = (uint16_t)(yTemp * yResolution / CIRQUE_PINNACLE_Y_RANGE);
#else
int32_t xTemp = 0, yTemp = 0;
ldiv_t temp;
static int32_t xRemainder, yRemainder;
temp = ldiv(((int32_t)coordinates->xDelta) * (int32_t)xResolution + xRemainder, (int32_t)CIRQUE_PINNACLE_X_RANGE);
xTemp = temp.quot;
xRemainder = temp.rem;
temp = ldiv(((int32_t)coordinates->yDelta) * (int32_t)yResolution + yRemainder, (int32_t)CIRQUE_PINNACLE_Y_RANGE);
yTemp = temp.quot;
yRemainder = temp.rem;
coordinates->xDelta = (int16_t)xTemp;
coordinates->yDelta = (int16_t)yTemp;
#endif
}
// Clears Status1 register flags (SW_CC and SW_DR)
void cirque_pinnacle_clear_flags(void) {
RAP_Write(HOSTREG__STATUS1, HOSTREG__STATUS1_DEFVAL & ~(HOSTREG__STATUS1__COMMAND_COMPLETE | HOSTREG__STATUS1__DATA_READY));
wait_us(50);
}
// Enables/Disables the feed
void cirque_pinnacle_enable_feed(bool feedEnable) {
uint8_t feedconfig1;
RAP_ReadBytes(HOSTREG__FEEDCONFIG1, &feedconfig1, 1);
if (feedEnable) {
feedconfig1 |= HOSTREG__FEEDCONFIG1__FEED_ENABLE;
} else {
feedconfig1 &= ~HOSTREG__FEEDCONFIG1__FEED_ENABLE;
}
RAP_Write(HOSTREG__FEEDCONFIG1, feedconfig1);
}
/* ERA (Extended Register Access) Functions */
// Reads <count> bytes from an extended register at <address> (16-bit address),
// stores values in <*data>
void ERA_ReadBytes(uint16_t address, uint8_t* data, uint16_t count) {
uint8_t ERAControlValue = 0xFF;
uint16_t timeout_timer;
cirque_pinnacle_enable_feed(false); // Disable feed
RAP_Write(HOSTREG__EXT_REG_AXS_ADDR_HIGH, (uint8_t)(address >> 8)); // Send upper byte of ERA address
RAP_Write(HOSTREG__EXT_REG_AXS_ADDR_LOW, (uint8_t)(address & 0x00FF)); // Send lower byte of ERA address
for (uint16_t i = 0; i < count; i++) {
RAP_Write(HOSTREG__EXT_REG_AXS_CTRL, HOSTREG__EREG_AXS__INC_ADDR_READ | HOSTREG__EREG_AXS__READ); // Signal ERA-read (auto-increment) to Pinnacle
// Wait for status register 0x1E to clear
timeout_timer = timer_read();
do {
RAP_ReadBytes(HOSTREG__EXT_REG_AXS_CTRL, &ERAControlValue, 1);
} while ((ERAControlValue != 0x00) && (timer_elapsed(timeout_timer) <= CIRQUE_PINNACLE_TIMEOUT));
RAP_ReadBytes(HOSTREG__EXT_REG_AXS_VALUE, data + i, 1);
cirque_pinnacle_clear_flags();
}
}
// Writes a byte, <data>, to an extended register at <address> (16-bit address)
void ERA_WriteByte(uint16_t address, uint8_t data) {
uint8_t ERAControlValue = 0xFF;
uint16_t timeout_timer;
cirque_pinnacle_enable_feed(false); // Disable feed
RAP_Write(HOSTREG__EXT_REG_AXS_VALUE, data); // Send data byte to be written
RAP_Write(HOSTREG__EXT_REG_AXS_ADDR_HIGH, (uint8_t)(address >> 8)); // Upper byte of ERA address
RAP_Write(HOSTREG__EXT_REG_AXS_ADDR_LOW, (uint8_t)(address & 0x00FF)); // Lower byte of ERA address
RAP_Write(HOSTREG__EXT_REG_AXS_CTRL, HOSTREG__EREG_AXS__WRITE); // Signal an ERA-write to Pinnacle
// Wait for status register 0x1E to clear
timeout_timer = timer_read();
do {
RAP_ReadBytes(HOSTREG__EXT_REG_AXS_CTRL, &ERAControlValue, 1);
} while ((ERAControlValue != 0x00) && (timer_elapsed(timeout_timer) <= CIRQUE_PINNACLE_TIMEOUT));
cirque_pinnacle_clear_flags();
}
bool cirque_pinnacle_set_adc_attenuation(uint8_t adcGain) {
uint8_t adcconfig = 0x00;
ERA_ReadBytes(EXTREG__TRACK_ADCCONFIG, &adcconfig, 1);
adcGain &= EXTREG__TRACK_ADCCONFIG__ADC_ATTENUATE_MASK;
if (adcGain == (adcconfig & EXTREG__TRACK_ADCCONFIG__ADC_ATTENUATE_MASK)) {
return false;
}
adcconfig &= ~EXTREG__TRACK_ADCCONFIG__ADC_ATTENUATE_MASK;
adcconfig |= adcGain;
ERA_WriteByte(EXTREG__TRACK_ADCCONFIG, adcconfig);
ERA_ReadBytes(EXTREG__TRACK_ADCCONFIG, &adcconfig, 1);
return true;
}
// Changes thresholds to improve detection of fingers
// Not needed for flat overlay?
void cirque_pinnacle_tune_edge_sensitivity(void) {
uint8_t widezmin = 0x00;
ERA_ReadBytes(EXTREG__XAXIS_WIDEZMIN, &widezmin, 1);
ERA_WriteByte(EXTREG__XAXIS_WIDEZMIN, 0x04); // magic number from Cirque sample code
ERA_ReadBytes(EXTREG__XAXIS_WIDEZMIN, &widezmin, 1);
ERA_ReadBytes(EXTREG__YAXIS_WIDEZMIN, &widezmin, 1);
ERA_WriteByte(EXTREG__YAXIS_WIDEZMIN, 0x03); // magic number from Cirque sample code
ERA_ReadBytes(EXTREG__YAXIS_WIDEZMIN, &widezmin, 1);
}
// Perform calibration
void cirque_pinnacle_calibrate(void) {
uint8_t calconfig;
uint16_t timeout_timer;
RAP_ReadBytes(HOSTREG__CALCONFIG1, &calconfig, 1);
calconfig |= HOSTREG__CALCONFIG1__CALIBRATE;
RAP_Write(HOSTREG__CALCONFIG1, calconfig);
// Calibration takes ~100ms according to GT-AN-090624, doubling the timeout just to be safe
timeout_timer = timer_read();
do {
RAP_ReadBytes(HOSTREG__CALCONFIG1, &calconfig, 1);
} while ((calconfig & HOSTREG__CALCONFIG1__CALIBRATE) && (timer_elapsed(timeout_timer) <= 200));
cirque_pinnacle_clear_flags();
}
// Enable/disable cursor smoothing, smoothing is enabled by default
void cirque_pinnacle_cursor_smoothing(bool enable) {
uint8_t feedconfig3;
RAP_ReadBytes(HOSTREG__FEEDCONFIG3, &feedconfig3, 1);
if (enable) {
feedconfig3 &= ~HOSTREG__FEEDCONFIG3__DISABLE_CROSS_RATE_SMOOTHING;
} else {
feedconfig3 |= HOSTREG__FEEDCONFIG3__DISABLE_CROSS_RATE_SMOOTHING;
}
RAP_Write(HOSTREG__FEEDCONFIG3, feedconfig3);
}
// Check sensor is connected
bool cirque_pinnacle_connected(void) {
uint8_t zidle = 0;
RAP_ReadBytes(HOSTREG__ZIDLE, &zidle, 1);
return zidle == HOSTREG__ZIDLE_DEFVAL;
}
/* Pinnacle-based TM040040/TM035035/TM023023 Functions */
void cirque_pinnacle_init(void) {
#if defined(POINTING_DEVICE_DRIVER_cirque_pinnacle_spi)
spi_init();
#elif defined(POINTING_DEVICE_DRIVER_cirque_pinnacle_i2c)
i2c_init();
#endif
touchpad_init = true;
// send a RESET command now, in case QMK had a soft-reset without a power cycle
RAP_Write(HOSTREG__SYSCONFIG1, HOSTREG__SYSCONFIG1__RESET);
wait_ms(30); // Pinnacle needs 10-15ms to boot, so wait long enough before configuring
RAP_Write(HOSTREG__SYSCONFIG1, HOSTREG__SYSCONFIG1_DEFVAL);
wait_us(50);
// Host clears SW_CC flag
cirque_pinnacle_clear_flags();
#if CIRQUE_PINNACLE_POSITION_MODE
RAP_Write(HOSTREG__FEEDCONFIG2, HOSTREG__FEEDCONFIG2_DEFVAL);
#else
// FeedConfig2 (Feature flags for Relative Mode Only)
uint8_t feedconfig2 = HOSTREG__FEEDCONFIG2__GLIDE_EXTEND_DISABLE | HOSTREG__FEEDCONFIG2__INTELLIMOUSE_MODE;
# if !defined(CIRQUE_PINNACLE_TAP_ENABLE)
feedconfig2 |= HOSTREG__FEEDCONFIG2__ALL_TAP_DISABLE;
# endif
# if !defined(CIRQUE_PINNACLE_SECONDARY_TAP_ENABLE)
feedconfig2 |= HOSTREG__FEEDCONFIG2__SECONDARY_TAP_DISABLE;
# elif !defined(CIRQUE_PINNACLE_TAP_ENABLE)
# error CIRQUE_PINNACLE_TAP_ENABLE must be defined for CIRQUE_PINNACLE_SECONDARY_TAP_ENABLE to work
# endif
# if !defined(CIRQUE_PINNACLE_SIDE_SCROLL_ENABLE)
feedconfig2 |= HOSTREG__FEEDCONFIG2__SCROLL_DISABLE;
# endif
RAP_Write(HOSTREG__FEEDCONFIG2, feedconfig2);
#endif
// FeedConfig1 (Data Output Flags)
RAP_Write(HOSTREG__FEEDCONFIG1, CIRQUE_PINNACLE_POSITION_MODE ? HOSTREG__FEEDCONFIG1__DATA_TYPE__REL0_ABS1 : HOSTREG__FEEDCONFIG1_DEFVAL);
#if CIRQUE_PINNACLE_POSITION_MODE
// Host sets z-idle packet count to 5 (default is 0x1E/30)
RAP_Write(HOSTREG__ZIDLE, 5);
#endif
bool calibrate = cirque_pinnacle_set_adc_attenuation(CIRQUE_PINNACLE_ATTENUATION);
#ifdef CIRQUE_PINNACLE_CURVED_OVERLAY
cirque_pinnacle_tune_edge_sensitivity();
calibrate = true;
#endif
if (calibrate) {
// Force a calibration after setting ADC attenuation
cirque_pinnacle_calibrate();
}
cirque_pinnacle_enable_feed(true);
#ifndef CIRQUE_PINNACLE_SKIP_SENSOR_CHECK
touchpad_init = cirque_pinnacle_connected();
#endif
}
pinnacle_data_t cirque_pinnacle_read_data(void) {
uint8_t data_ready = 0;
uint8_t data[6] = {0};
pinnacle_data_t result = {0};
// Check if there is valid data available
RAP_ReadBytes(HOSTREG__STATUS1, &data_ready, 1);
if ((data_ready & HOSTREG__STATUS1__DATA_READY) == 0) {
// no data available yet
result.valid = false; // be explicit
return result;
}
// Read all data bytes
RAP_ReadBytes(HOSTREG__PACKETBYTE_0, data, 6);
// Get ready for the next data sample
cirque_pinnacle_clear_flags();
#if CIRQUE_PINNACLE_POSITION_MODE
// Decode data for absolute mode
// Register 0x13 is unused in this mode (palm detection area)
result.buttonFlags = data[0] & 0x3F; // bit0 to bit5 are switch 0-5, only hardware button presses (from input pin on the Pinnacle chip)
result.xValue = data[2] | ((data[4] & 0x0F) << 8); // merge high and low bits for X
result.yValue = data[3] | ((data[4] & 0xF0) << 4); // merge high and low bits for Y
result.zValue = data[5] & 0x3F; // Z is only lower 6 bits, upper 2 bits are reserved/unused
result.touchDown = (result.xValue != 0 || result.yValue != 0); // (0,0) is a "magic coordinate" to indicate "finger touched down"
#else
// Decode data for relative mode
// Registers 0x16 and 0x17 are unused in this mode
result.buttons = data[0] & 0x07; // Only three buttons are supported
if ((data[0] & 0x10) && data[1] != 0) {
result.xDelta = -((int16_t)256 - (int16_t)(data[1]));
} else {
result.xDelta = data[1];
}
if ((data[0] & 0x20) && data[2] != 0) {
result.yDelta = ((int16_t)256 - (int16_t)(data[2]));
} else {
result.yDelta = -((int16_t)data[2]);
}
result.wheelCount = ((int8_t*)data)[3];
#endif
#ifdef CIRQUE_PINNACLE_REACHABLE_CALIBRATION
static uint16_t xMin = UINT16_MAX, yMin = UINT16_MAX, yMax = 0, xMax = 0;
if (result.xValue < xMin) xMin = result.xValue;
if (result.xValue > xMax) xMax = result.xValue;
if (result.yValue < yMin) yMin = result.yValue;
if (result.yValue > yMax) yMax = result.yValue;
pd_dprintf("%s: xLo=%3d xHi=%3d yLo=%3d yHi=%3d\n", __FUNCTION__, xMin, xMax, yMin, yMax);
#endif
result.valid = true;
return result;
}