qmk-keychron-q3-colemak-dh/drivers/sensors/adns9800.c

217 lines
6.3 KiB
C

/* Copyright 2020 Alexander Tulloh
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "spi_master.h"
#include "adns9800_srom_A6.h"
#include "adns9800.h"
#include "wait.h"
// registers
// clang-format off
#define REG_Product_ID 0x00
#define REG_Revision_ID 0x01
#define REG_Motion 0x02
#define REG_Delta_X_L 0x03
#define REG_Delta_X_H 0x04
#define REG_Delta_Y_L 0x05
#define REG_Delta_Y_H 0x06
#define REG_SQUAL 0x07
#define REG_Pixel_Sum 0x08
#define REG_Maximum_Pixel 0x09
#define REG_Minimum_Pixel 0x0a
#define REG_Shutter_Lower 0x0b
#define REG_Shutter_Upper 0x0c
#define REG_Frame_Period_Lower 0x0d
#define REG_Frame_Period_Upper 0x0e
#define REG_Configuration_I 0x0f
#define REG_Configuration_II 0x10
#define REG_Frame_Capture 0x12
#define REG_SROM_Enable 0x13
#define REG_Run_Downshift 0x14
#define REG_Rest1_Rate 0x15
#define REG_Rest1_Downshift 0x16
#define REG_Rest2_Rate 0x17
#define REG_Rest2_Downshift 0x18
#define REG_Rest3_Rate 0x19
#define REG_Frame_Period_Max_Bound_Lower 0x1a
#define REG_Frame_Period_Max_Bound_Upper 0x1b
#define REG_Frame_Period_Min_Bound_Lower 0x1c
#define REG_Frame_Period_Min_Bound_Upper 0x1d
#define REG_Shutter_Max_Bound_Lower 0x1e
#define REG_Shutter_Max_Bound_Upper 0x1f
#define REG_LASER_CTRL0 0x20
#define REG_Observation 0x24
#define REG_Data_Out_Lower 0x25
#define REG_Data_Out_Upper 0x26
#define REG_SROM_ID 0x2a
#define REG_Lift_Detection_Thr 0x2e
#define REG_Configuration_V 0x2f
#define REG_Configuration_IV 0x39
#define REG_Power_Up_Reset 0x3a
#define REG_Shutdown 0x3b
#define REG_Inverse_Product_ID 0x3f
#define REG_Motion_Burst 0x50
#define REG_SROM_Load_Burst 0x62
#define REG_Pixel_Burst 0x64
#define MIN_CPI 200
#define MAX_CPI 8200
#define CPI_STEP 200
#define CLAMP_CPI(value) value<MIN_CPI ? MIN_CPI : value> MAX_CPI ? MAX_CPI : value
#define US_BETWEEN_WRITES 120
#define US_BETWEEN_READS 20
#define US_BEFORE_MOTION 100
#define MSB1 0x80
// clang-format on
void adns9800_spi_start(void) { spi_start(ADNS9800_CS_PIN, false, ADNS9800_SPI_MODE, ADNS9800_SPI_DIVISOR); }
void adns9800_write(uint8_t reg_addr, uint8_t data) {
adns9800_spi_start();
spi_write(reg_addr | MSB1);
spi_write(data);
spi_stop();
wait_us(US_BETWEEN_WRITES);
}
uint8_t adns9800_read(uint8_t reg_addr) {
adns9800_spi_start();
spi_write(reg_addr & 0x7f);
uint8_t data = spi_read();
spi_stop();
wait_us(US_BETWEEN_READS);
return data;
}
void adns9800_init() {
setPinOutput(ADNS9800_CS_PIN);
spi_init();
// reboot
adns9800_write(REG_Power_Up_Reset, 0x5a);
wait_ms(50);
// read registers and discard
adns9800_read(REG_Motion);
adns9800_read(REG_Delta_X_L);
adns9800_read(REG_Delta_X_H);
adns9800_read(REG_Delta_Y_L);
adns9800_read(REG_Delta_Y_H);
// upload firmware
// 3k firmware mode
adns9800_write(REG_Configuration_IV, 0x02);
// enable initialisation
adns9800_write(REG_SROM_Enable, 0x1d);
// wait a frame
wait_ms(10);
// start SROM download
adns9800_write(REG_SROM_Enable, 0x18);
// write the SROM file
adns9800_spi_start();
spi_write(REG_SROM_Load_Burst | 0x80);
wait_us(15);
// send all bytes of the firmware
for (uint16_t i = 0; i < FIRMWARE_LENGTH; i++) {
spi_write(pgm_read_byte(firmware_data + i));
wait_us(15);
}
spi_stop();
wait_ms(10);
// enable laser
uint8_t laser_ctrl0 = adns9800_read(REG_LASER_CTRL0);
adns9800_write(REG_LASER_CTRL0, laser_ctrl0 & 0xf0);
adns9800_set_cpi(ADNS9800_CPI);
}
config_adns9800_t adns9800_get_config(void) {
uint8_t cpival = adns9800_read(REG_Configuration_I);
return (config_adns9800_t){(cpival & 0xFF) * CPI_STEP};
}
void adns9800_set_config(config_adns9800_t config) {
uint8_t config_1 = (CLAMP_CPI(config.cpi) / CPI_STEP) & 0xFF;
adns9800_write(REG_Configuration_I, config_1);
}
uint16_t adns9800_get_cpi(void) {
uint8_t cpival = adns9800_read(REG_Configuration_I);
return (uint16_t)(cpival & 0xFF) * CPI_STEP;
}
void adns9800_set_cpi(uint16_t cpi) {
uint8_t config_1 = (CLAMP_CPI(cpi) / CPI_STEP) & 0xFF;
adns9800_write(REG_Configuration_I, config_1);
}
static int16_t convertDeltaToInt(uint8_t high, uint8_t low) {
// join bytes into twos compliment
uint16_t twos_comp = (high << 8) | low;
// convert twos comp to int
if (twos_comp & 0x8000) return -1 * (~twos_comp + 1);
return twos_comp;
}
report_adns9800_t adns9800_get_report(void) {
report_adns9800_t report = {0};
adns9800_spi_start();
// start burst mode
spi_write(REG_Motion_Burst & 0x7f);
wait_us(US_BEFORE_MOTION);
uint8_t motion = spi_read();
if (motion & 0x80) {
// clear observation register
spi_read();
// delta registers
uint8_t delta_x_l = spi_read();
uint8_t delta_x_h = spi_read();
uint8_t delta_y_l = spi_read();
uint8_t delta_y_h = spi_read();
report.x = convertDeltaToInt(delta_x_h, delta_x_l);
report.y = convertDeltaToInt(delta_y_h, delta_y_l);
}
// clear residual motion
spi_write(REG_Motion & 0x7f);
spi_stop();
return report;
}