qmk-keychron-q3-colemak-dh/quantum/dynamic_keymap.c

321 lines
12 KiB
C

/* Copyright 2017 Jason Williams (Wilba)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "keymap.h" // to get keymaps[][][]
#include "eeprom.h"
#include "progmem.h" // to read default from flash
#include "quantum.h" // for send_string()
#include "dynamic_keymap.h"
#ifdef VIA_ENABLE
# include "via.h" // for VIA_EEPROM_CONFIG_END
# define DYNAMIC_KEYMAP_EEPROM_START (VIA_EEPROM_CONFIG_END)
#else
# ifndef DYNAMIC_KEYMAP_EEPROM_START
# define DYNAMIC_KEYMAP_EEPROM_START (EECONFIG_SIZE)
# endif
#endif
#ifdef ENCODER_ENABLE
# include "encoder.h"
#else
# define NUM_ENCODERS 0
#endif
#ifndef DYNAMIC_KEYMAP_LAYER_COUNT
# define DYNAMIC_KEYMAP_LAYER_COUNT 4
#endif
#ifndef DYNAMIC_KEYMAP_MACRO_COUNT
# define DYNAMIC_KEYMAP_MACRO_COUNT 16
#endif
#ifndef TOTAL_EEPROM_BYTE_COUNT
# error Unknown total EEPROM size. Cannot derive maximum for dynamic keymaps.
#endif
#ifndef DYNAMIC_KEYMAP_EEPROM_MAX_ADDR
# define DYNAMIC_KEYMAP_EEPROM_MAX_ADDR (TOTAL_EEPROM_BYTE_COUNT - 1)
#endif
#if DYNAMIC_KEYMAP_EEPROM_MAX_ADDR > (TOTAL_EEPROM_BYTE_COUNT - 1)
# pragma message STR(DYNAMIC_KEYMAP_EEPROM_MAX_ADDR) " > " STR((TOTAL_EEPROM_BYTE_COUNT - 1))
# error DYNAMIC_KEYMAP_EEPROM_MAX_ADDR is configured to use more space than what is available for the selected EEPROM driver
#endif
// Due to usage of uint16_t check for max 65535
#if DYNAMIC_KEYMAP_EEPROM_MAX_ADDR > 65535
# pragma message STR(DYNAMIC_KEYMAP_EEPROM_MAX_ADDR) " > 65535"
# error DYNAMIC_KEYMAP_EEPROM_MAX_ADDR must be less than 65536
#endif
// If DYNAMIC_KEYMAP_EEPROM_ADDR not explicitly defined in config.h,
#ifndef DYNAMIC_KEYMAP_EEPROM_ADDR
# define DYNAMIC_KEYMAP_EEPROM_ADDR DYNAMIC_KEYMAP_EEPROM_START
#endif
// Dynamic encoders starts after dynamic keymaps
#ifndef DYNAMIC_KEYMAP_ENCODER_EEPROM_ADDR
# define DYNAMIC_KEYMAP_ENCODER_EEPROM_ADDR (DYNAMIC_KEYMAP_EEPROM_ADDR + (DYNAMIC_KEYMAP_LAYER_COUNT * MATRIX_ROWS * MATRIX_COLS * 2))
#endif
// Dynamic macro starts after dynamic encoders, but only when using ENCODER_MAP
#ifdef ENCODER_MAP_ENABLE
# ifndef DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR
# define DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR (DYNAMIC_KEYMAP_ENCODER_EEPROM_ADDR + (DYNAMIC_KEYMAP_LAYER_COUNT * NUM_ENCODERS * 2 * 2))
# endif // DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR
#else // ENCODER_MAP_ENABLE
# ifndef DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR
# define DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR (DYNAMIC_KEYMAP_ENCODER_EEPROM_ADDR)
# endif // DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR
#endif // ENCODER_MAP_ENABLE
// Sanity check that dynamic keymaps fit in available EEPROM
// If there's not 100 bytes available for macros, then something is wrong.
// The keyboard should override DYNAMIC_KEYMAP_LAYER_COUNT to reduce it,
// or DYNAMIC_KEYMAP_EEPROM_MAX_ADDR to increase it, *only if* the microcontroller has
// more than the default.
_Static_assert((DYNAMIC_KEYMAP_EEPROM_MAX_ADDR) - (DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR) >= 100, "Dynamic keymaps are configured to use more EEPROM than is available.");
// Dynamic macros are stored after the keymaps and use what is available
// up to and including DYNAMIC_KEYMAP_EEPROM_MAX_ADDR.
#ifndef DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE
# define DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE (DYNAMIC_KEYMAP_EEPROM_MAX_ADDR - DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + 1)
#endif
#ifndef DYNAMIC_KEYMAP_MACRO_DELAY
# define DYNAMIC_KEYMAP_MACRO_DELAY TAP_CODE_DELAY
#endif
uint8_t dynamic_keymap_get_layer_count(void) {
return DYNAMIC_KEYMAP_LAYER_COUNT;
}
void *dynamic_keymap_key_to_eeprom_address(uint8_t layer, uint8_t row, uint8_t column) {
// TODO: optimize this with some left shifts
return ((void *)DYNAMIC_KEYMAP_EEPROM_ADDR) + (layer * MATRIX_ROWS * MATRIX_COLS * 2) + (row * MATRIX_COLS * 2) + (column * 2);
}
uint16_t dynamic_keymap_get_keycode(uint8_t layer, uint8_t row, uint8_t column) {
if (layer >= DYNAMIC_KEYMAP_LAYER_COUNT || row >= MATRIX_ROWS || column >= MATRIX_COLS) return KC_NO;
void *address = dynamic_keymap_key_to_eeprom_address(layer, row, column);
// Big endian, so we can read/write EEPROM directly from host if we want
uint16_t keycode = eeprom_read_byte(address) << 8;
keycode |= eeprom_read_byte(address + 1);
return keycode;
}
void dynamic_keymap_set_keycode(uint8_t layer, uint8_t row, uint8_t column, uint16_t keycode) {
if (layer >= DYNAMIC_KEYMAP_LAYER_COUNT || row >= MATRIX_ROWS || column >= MATRIX_COLS) return;
void *address = dynamic_keymap_key_to_eeprom_address(layer, row, column);
// Big endian, so we can read/write EEPROM directly from host if we want
eeprom_update_byte(address, (uint8_t)(keycode >> 8));
eeprom_update_byte(address + 1, (uint8_t)(keycode & 0xFF));
}
#ifdef ENCODER_MAP_ENABLE
void *dynamic_keymap_encoder_to_eeprom_address(uint8_t layer, uint8_t encoder_id) {
return ((void *)DYNAMIC_KEYMAP_ENCODER_EEPROM_ADDR) + (layer * NUM_ENCODERS * 2 * 2) + (encoder_id * 2 * 2);
}
uint16_t dynamic_keymap_get_encoder(uint8_t layer, uint8_t encoder_id, bool clockwise) {
if (layer >= DYNAMIC_KEYMAP_LAYER_COUNT || encoder_id >= NUM_ENCODERS) return KC_NO;
void *address = dynamic_keymap_encoder_to_eeprom_address(layer, encoder_id);
// Big endian, so we can read/write EEPROM directly from host if we want
uint16_t keycode = ((uint16_t)eeprom_read_byte(address + (clockwise ? 0 : 2))) << 8;
keycode |= eeprom_read_byte(address + (clockwise ? 0 : 2) + 1);
return keycode;
}
void dynamic_keymap_set_encoder(uint8_t layer, uint8_t encoder_id, bool clockwise, uint16_t keycode) {
if (layer >= DYNAMIC_KEYMAP_LAYER_COUNT || encoder_id >= NUM_ENCODERS) return;
void *address = dynamic_keymap_encoder_to_eeprom_address(layer, encoder_id);
// Big endian, so we can read/write EEPROM directly from host if we want
eeprom_update_byte(address + (clockwise ? 0 : 2), (uint8_t)(keycode >> 8));
eeprom_update_byte(address + (clockwise ? 0 : 2) + 1, (uint8_t)(keycode & 0xFF));
}
#endif // ENCODER_MAP_ENABLE
void dynamic_keymap_reset(void) {
// Reset the keymaps in EEPROM to what is in flash.
for (int layer = 0; layer < DYNAMIC_KEYMAP_LAYER_COUNT; layer++) {
for (int row = 0; row < MATRIX_ROWS; row++) {
for (int column = 0; column < MATRIX_COLS; column++) {
if (layer < keymap_layer_count()) {
dynamic_keymap_set_keycode(layer, row, column, keycode_at_keymap_location_raw(layer, row, column));
} else {
dynamic_keymap_set_keycode(layer, row, column, KC_TRANSPARENT);
}
}
}
#ifdef ENCODER_MAP_ENABLE
for (int encoder = 0; encoder < NUM_ENCODERS; encoder++) {
if (layer < encodermap_layer_count()) {
dynamic_keymap_set_encoder(layer, encoder, true, keycode_at_encodermap_location_raw(layer, encoder, true));
dynamic_keymap_set_encoder(layer, encoder, false, keycode_at_encodermap_location_raw(layer, encoder, false));
} else {
dynamic_keymap_set_encoder(layer, encoder, true, KC_TRANSPARENT);
dynamic_keymap_set_encoder(layer, encoder, false, KC_TRANSPARENT);
}
}
#endif // ENCODER_MAP_ENABLE
}
}
void dynamic_keymap_get_buffer(uint16_t offset, uint16_t size, uint8_t *data) {
uint16_t dynamic_keymap_eeprom_size = DYNAMIC_KEYMAP_LAYER_COUNT * MATRIX_ROWS * MATRIX_COLS * 2;
void * source = (void *)(DYNAMIC_KEYMAP_EEPROM_ADDR + offset);
uint8_t *target = data;
for (uint16_t i = 0; i < size; i++) {
if (offset + i < dynamic_keymap_eeprom_size) {
*target = eeprom_read_byte(source);
} else {
*target = 0x00;
}
source++;
target++;
}
}
void dynamic_keymap_set_buffer(uint16_t offset, uint16_t size, uint8_t *data) {
uint16_t dynamic_keymap_eeprom_size = DYNAMIC_KEYMAP_LAYER_COUNT * MATRIX_ROWS * MATRIX_COLS * 2;
void * target = (void *)(DYNAMIC_KEYMAP_EEPROM_ADDR + offset);
uint8_t *source = data;
for (uint16_t i = 0; i < size; i++) {
if (offset + i < dynamic_keymap_eeprom_size) {
eeprom_update_byte(target, *source);
}
source++;
target++;
}
}
uint16_t keycode_at_keymap_location(uint8_t layer_num, uint8_t row, uint8_t column) {
if (layer_num < DYNAMIC_KEYMAP_LAYER_COUNT && row < MATRIX_ROWS && column < MATRIX_COLS) {
return dynamic_keymap_get_keycode(layer_num, row, column);
}
return KC_NO;
}
#ifdef ENCODER_MAP_ENABLE
uint16_t keycode_at_encodermap_location(uint8_t layer_num, uint8_t encoder_idx, bool clockwise) {
if (layer_num < DYNAMIC_KEYMAP_LAYER_COUNT && encoder_idx < NUM_ENCODERS) {
return dynamic_keymap_get_encoder(layer_num, encoder_idx, clockwise);
}
return KC_NO;
}
#endif // ENCODER_MAP_ENABLE
uint8_t dynamic_keymap_macro_get_count(void) {
return DYNAMIC_KEYMAP_MACRO_COUNT;
}
uint16_t dynamic_keymap_macro_get_buffer_size(void) {
return DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE;
}
void dynamic_keymap_macro_get_buffer(uint16_t offset, uint16_t size, uint8_t *data) {
void * source = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + offset);
uint8_t *target = data;
for (uint16_t i = 0; i < size; i++) {
if (offset + i < DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE) {
*target = eeprom_read_byte(source);
} else {
*target = 0x00;
}
source++;
target++;
}
}
void dynamic_keymap_macro_set_buffer(uint16_t offset, uint16_t size, uint8_t *data) {
void * target = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + offset);
uint8_t *source = data;
for (uint16_t i = 0; i < size; i++) {
if (offset + i < DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE) {
eeprom_update_byte(target, *source);
}
source++;
target++;
}
}
void dynamic_keymap_macro_reset(void) {
void *p = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR);
void *end = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE);
while (p != end) {
eeprom_update_byte(p, 0);
++p;
}
}
void dynamic_keymap_macro_send(uint8_t id) {
if (id >= DYNAMIC_KEYMAP_MACRO_COUNT) {
return;
}
// Check the last byte of the buffer.
// If it's not zero, then we are in the middle
// of buffer writing, possibly an aborted buffer
// write. So do nothing.
void *p = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE - 1);
if (eeprom_read_byte(p) != 0) {
return;
}
// Skip N null characters
// p will then point to the Nth macro
p = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR);
void *end = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE);
while (id > 0) {
// If we are past the end of the buffer, then the buffer
// contents are garbage, i.e. there were not DYNAMIC_KEYMAP_MACRO_COUNT
// nulls in the buffer.
if (p == end) {
return;
}
if (eeprom_read_byte(p) == 0) {
--id;
}
++p;
}
// Send the macro string one or three chars at a time
// by making temporary 1 or 3 char strings
char data[4] = {0, 0, 0, 0};
// We already checked there was a null at the end of
// the buffer, so this cannot go past the end
while (1) {
data[0] = eeprom_read_byte(p++);
data[1] = 0;
// Stop at the null terminator of this macro string
if (data[0] == 0) {
break;
}
// If the char is magic (tap, down, up),
// add the next char (key to use) and send a 3 char string.
if (data[0] == SS_TAP_CODE || data[0] == SS_DOWN_CODE || data[0] == SS_UP_CODE) {
data[1] = data[0];
data[0] = SS_QMK_PREFIX;
data[2] = eeprom_read_byte(p++);
if (data[2] == 0) {
break;
}
}
send_string_with_delay(data, DYNAMIC_KEYMAP_MACRO_DELAY);
}
}