qmk-keychron-q3-colemak-dh/drivers/led/issi/is31fl3736.c

289 lines
10 KiB
C

/* Copyright 2018 Jason Williams (Wilba)
* Copyright 2021 Doni Crosby
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "is31fl3736.h"
#include "i2c_master.h"
#include "wait.h"
// This is a 7-bit address, that gets left-shifted and bit 0
// set to 0 for write, 1 for read (as per I2C protocol)
// The address will vary depending on your wiring:
// 00 <-> GND
// 01 <-> SCL
// 10 <-> SDA
// 11 <-> VCC
// ADDR1 represents A1:A0 of the 7-bit address.
// ADDR2 represents A3:A2 of the 7-bit address.
// The result is: 0b101(ADDR2)(ADDR1)
#define ISSI_ADDR_DEFAULT 0x50
#define ISSI_COMMANDREGISTER 0xFD
#define ISSI_COMMANDREGISTER_WRITELOCK 0xFE
#define ISSI_INTERRUPTMASKREGISTER 0xF0
#define ISSI_INTERRUPTSTATUSREGISTER 0xF1
#define ISSI_PAGE_LEDCONTROL 0x00 // PG0
#define ISSI_PAGE_PWM 0x01 // PG1
#define ISSI_PAGE_AUTOBREATH 0x02 // PG2
#define ISSI_PAGE_FUNCTION 0x03 // PG3
#define ISSI_REG_CONFIGURATION 0x00 // PG3
#define ISSI_REG_GLOBALCURRENT 0x01 // PG3
#define ISSI_REG_RESET 0x11 // PG3
#define ISSI_REG_SWPULLUP 0x0F // PG3
#define ISSI_REG_CSPULLUP 0x10 // PG3
#ifndef ISSI_TIMEOUT
# define ISSI_TIMEOUT 100
#endif
#ifndef ISSI_PERSISTENCE
# define ISSI_PERSISTENCE 0
#endif
#ifndef ISSI_SWPULLUP
# define ISSI_SWPULLUP PUR_0R
#endif
#ifndef ISSI_CSPULLUP
# define ISSI_CSPULLUP PUR_0R
#endif
#ifndef ISSI_GLOBALCURRENT
# define ISSI_GLOBALCURRENT 0xFF
#endif
// Transfer buffer for TWITransmitData()
uint8_t g_twi_transfer_buffer[20];
// These buffers match the IS31FL3736 PWM registers.
// The control buffers match the PG0 LED On/Off registers.
// Storing them like this is optimal for I2C transfers to the registers.
// We could optimize this and take out the unused registers from these
// buffers and the transfers in IS31FL3736_write_pwm_buffer() but it's
// probably not worth the extra complexity.
uint8_t g_pwm_buffer[DRIVER_COUNT][192];
bool g_pwm_buffer_update_required[DRIVER_COUNT] = {false};
uint8_t g_led_control_registers[DRIVER_COUNT][24] = {{0}, {0}};
bool g_led_control_registers_update_required = false;
void IS31FL3736_write_register(uint8_t addr, uint8_t reg, uint8_t data) {
g_twi_transfer_buffer[0] = reg;
g_twi_transfer_buffer[1] = data;
#if ISSI_PERSISTENCE > 0
for (uint8_t i = 0; i < ISSI_PERSISTENCE; i++) {
if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 2, ISSI_TIMEOUT) == 0) break;
}
#else
i2c_transmit(addr << 1, g_twi_transfer_buffer, 2, ISSI_TIMEOUT);
#endif
}
void IS31FL3736_write_pwm_buffer(uint8_t addr, uint8_t *pwm_buffer) {
// assumes PG1 is already selected
// transmit PWM registers in 12 transfers of 16 bytes
// g_twi_transfer_buffer[] is 20 bytes
// iterate over the pwm_buffer contents at 16 byte intervals
for (int i = 0; i < 192; i += 16) {
g_twi_transfer_buffer[0] = i;
// copy the data from i to i+15
// device will auto-increment register for data after the first byte
// thus this sets registers 0x00-0x0F, 0x10-0x1F, etc. in one transfer
memcpy(g_twi_transfer_buffer + 1, pwm_buffer + i, 16);
#if ISSI_PERSISTENCE > 0
for (uint8_t i = 0; i < ISSI_PERSISTENCE; i++) {
if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 17, ISSI_TIMEOUT) == 0) break;
}
#else
i2c_transmit(addr << 1, g_twi_transfer_buffer, 17, ISSI_TIMEOUT);
#endif
}
}
void IS31FL3736_init(uint8_t addr) {
// In order to avoid the LEDs being driven with garbage data
// in the LED driver's PWM registers, shutdown is enabled last.
// Set up the mode and other settings, clear the PWM registers,
// then disable software shutdown.
// Unlock the command register.
IS31FL3736_write_register(addr, ISSI_COMMANDREGISTER_WRITELOCK, 0xC5);
// Select PG0
IS31FL3736_write_register(addr, ISSI_COMMANDREGISTER, ISSI_PAGE_LEDCONTROL);
// Turn off all LEDs.
for (int i = 0x00; i <= 0x17; i++) {
IS31FL3736_write_register(addr, i, 0x00);
}
// Unlock the command register.
IS31FL3736_write_register(addr, ISSI_COMMANDREGISTER_WRITELOCK, 0xC5);
// Select PG1
IS31FL3736_write_register(addr, ISSI_COMMANDREGISTER, ISSI_PAGE_PWM);
// Set PWM on all LEDs to 0
// No need to setup Breath registers to PWM as that is the default.
for (int i = 0x00; i <= 0xBF; i++) {
IS31FL3736_write_register(addr, i, 0x00);
}
// Unlock the command register.
IS31FL3736_write_register(addr, ISSI_COMMANDREGISTER_WRITELOCK, 0xC5);
// Select PG3
IS31FL3736_write_register(addr, ISSI_COMMANDREGISTER, ISSI_PAGE_FUNCTION);
// Set de-ghost pull-up resistors (SWx)
IS31FL3736_write_register(addr, ISSI_REG_SWPULLUP, ISSI_SWPULLUP);
// Set de-ghost pull-down resistors (CSx)
IS31FL3736_write_register(addr, ISSI_REG_CSPULLUP, ISSI_CSPULLUP);
// Set global current to maximum.
IS31FL3736_write_register(addr, ISSI_REG_GLOBALCURRENT, ISSI_GLOBALCURRENT);
// Disable software shutdown.
IS31FL3736_write_register(addr, ISSI_REG_CONFIGURATION, 0x01);
// Wait 10ms to ensure the device has woken up.
wait_ms(10);
}
void IS31FL3736_set_color(int index, uint8_t red, uint8_t green, uint8_t blue) {
is31_led led;
if (index >= 0 && index < RGB_MATRIX_LED_COUNT) {
memcpy_P(&led, (&g_is31_leds[index]), sizeof(led));
if (g_pwm_buffer[led.driver][led.r] == red && g_pwm_buffer[led.driver][led.g] == green && g_pwm_buffer[led.driver][led.b] == blue) {
return;
}
g_pwm_buffer[led.driver][led.r] = red;
g_pwm_buffer[led.driver][led.g] = green;
g_pwm_buffer[led.driver][led.b] = blue;
g_pwm_buffer_update_required[led.driver] = true;
}
}
void IS31FL3736_set_color_all(uint8_t red, uint8_t green, uint8_t blue) {
for (int i = 0; i < RGB_MATRIX_LED_COUNT; i++) {
IS31FL3736_set_color(i, red, green, blue);
}
}
void IS31FL3736_set_led_control_register(uint8_t index, bool red, bool green, bool blue) {
is31_led led;
memcpy_P(&led, (&g_is31_leds[index]), sizeof(led));
// IS31FL3733
// The PWM register for a matrix position (0x00 to 0xBF) can be
// divided by 8 to get the LED control register (0x00 to 0x17),
// then mod 8 to get the bit position within that register.
// IS31FL3736
// The PWM register for a matrix position (0x00 to 0xBF) is interleaved, so:
// A1=0x00 A2=0x02 A3=0x04 A4=0x06 A5=0x08 A6=0x0A A7=0x0C A8=0x0E
// B1=0x10 B2=0x12 B3=0x14
// But also, the LED control registers (0x00 to 0x17) are also interleaved, so:
// A1-A4=0x00 A5-A8=0x01
// So, the same math applies.
uint8_t control_register_r = led.r / 8;
uint8_t control_register_g = led.g / 8;
uint8_t control_register_b = led.b / 8;
uint8_t bit_r = led.r % 8;
uint8_t bit_g = led.g % 8;
uint8_t bit_b = led.b % 8;
if (red) {
g_led_control_registers[led.driver][control_register_r] |= (1 << bit_r);
} else {
g_led_control_registers[led.driver][control_register_r] &= ~(1 << bit_r);
}
if (green) {
g_led_control_registers[led.driver][control_register_g] |= (1 << bit_g);
} else {
g_led_control_registers[led.driver][control_register_g] &= ~(1 << bit_g);
}
if (blue) {
g_led_control_registers[led.driver][control_register_b] |= (1 << bit_b);
} else {
g_led_control_registers[led.driver][control_register_b] &= ~(1 << bit_b);
}
g_led_control_registers_update_required = true;
}
void IS31FL3736_mono_set_brightness(int index, uint8_t value) {
if (index >= 0 && index < 96) {
// Index in range 0..95 -> A1..A8, B1..B8, etc.
// Map index 0..95 to registers 0x00..0xBE (interleaved)
uint8_t pwm_register = index * 2;
g_pwm_buffer[0][pwm_register] = value;
g_pwm_buffer_update_required[0] = true;
}
}
void IS31FL3736_mono_set_brightness_all(uint8_t value) {
for (int i = 0; i < 96; i++) {
IS31FL3736_mono_set_brightness(i, value);
}
}
void IS31FL3736_mono_set_led_control_register(uint8_t index, bool enabled) {
// Index in range 0..95 -> A1..A8, B1..B8, etc.
// Map index 0..95 to registers 0x00..0xBE (interleaved)
uint8_t pwm_register = index * 2;
// Map register 0x00..0xBE (interleaved) into control register and bit
uint8_t control_register = pwm_register / 8;
uint8_t bit = pwm_register % 8;
if (enabled) {
g_led_control_registers[0][control_register] |= (1 << bit);
} else {
g_led_control_registers[0][control_register] &= ~(1 << bit);
}
g_led_control_registers_update_required = true;
}
void IS31FL3736_update_pwm_buffers(uint8_t addr, uint8_t index) {
if (g_pwm_buffer_update_required[index]) {
// Firstly we need to unlock the command register and select PG1
IS31FL3736_write_register(addr, ISSI_COMMANDREGISTER_WRITELOCK, 0xC5);
IS31FL3736_write_register(addr, ISSI_COMMANDREGISTER, ISSI_PAGE_PWM);
IS31FL3736_write_pwm_buffer(addr, g_pwm_buffer[index]);
}
g_pwm_buffer_update_required[index] = false;
}
void IS31FL3736_update_led_control_registers(uint8_t addr1, uint8_t addr2) {
if (g_led_control_registers_update_required) {
// Firstly we need to unlock the command register and select PG0
IS31FL3736_write_register(addr1, ISSI_COMMANDREGISTER_WRITELOCK, 0xC5);
IS31FL3736_write_register(addr1, ISSI_COMMANDREGISTER, ISSI_PAGE_LEDCONTROL);
for (int i = 0; i < 24; i++) {
IS31FL3736_write_register(addr1, i, g_led_control_registers[0][i]);
// IS31FL3736_write_register(addr2, i, g_led_control_registers[1][i]);
}
g_led_control_registers_update_required = false;
}
}