Files
styx/dataset/nettrie/valuetrie.go
2025-10-08 20:57:13 +02:00

329 lines
8.3 KiB
Go

package nettrie
import (
"math/bits"
"net/netip"
)
// getBit returns the n-th bit of an IP address (0-indexed).
func getBit(addr netip.Addr, n int) byte {
slice := addr.AsSlice()
byteIndex := n / 8
bitIndex := 7 - (n % 8)
return (slice[byteIndex] >> bitIndex) & 1
}
// commonPrefixLen computes the number of leading bits that are the same for two addresses.
func commonPrefixLen(a, b netip.Addr) int {
if a.Is4() != b.Is4() {
return 0
}
aSlice := a.AsSlice()
bSlice := b.AsSlice()
commonLen := 0
for i := 0; i < len(aSlice); i++ {
xor := aSlice[i] ^ bSlice[i]
if xor == 0 {
commonLen += 8
} else {
commonLen += bits.LeadingZeros8(xor)
return commonLen
}
}
return commonLen
}
// ValueNode represents a node in the path-compressed trie.
// Each node represents a prefix and can have up to two children.
type ValueNode[T any] struct {
children [2]*ValueNode[T]
// prefix is the full prefix represented by the path to this node.
prefix netip.Prefix
value T
isValue bool
}
// ValueTrie is a path-compressed radix trie that stores network prefixes and their values.
type ValueTrie[T any] struct {
rootV4 *ValueNode[T]
rootV6 *ValueNode[T]
}
// NewValue creates and initializes a new ValueTrie.
func NewValue[T any]() *ValueTrie[T] {
return &ValueTrie[T]{}
}
// Insert adds or updates a prefix in the trie with the given value.
func (t *ValueTrie[T]) Insert(p netip.Prefix, value T) {
p = p.Masked()
addr := p.Addr()
if addr.Is4() {
t.rootV4 = t.insert(t.rootV4, p, value)
} else {
t.rootV6 = t.insert(t.rootV6, p, value)
}
}
// insert is the recursive helper for inserting a prefix into the trie.
func (t *ValueTrie[T]) insert(node *ValueNode[T], p netip.Prefix, value T) *ValueNode[T] {
if node == nil {
return &ValueNode[T]{prefix: p, value: value, isValue: true}
}
addr := p.Addr()
commonLen := commonPrefixLen(addr, node.prefix.Addr())
pBits := p.Bits()
nodeBits := node.prefix.Bits()
if commonLen > pBits {
commonLen = pBits
}
if commonLen > nodeBits {
commonLen = nodeBits
}
if commonLen == nodeBits && commonLen == pBits {
// Exact match, update the value.
node.value = value
node.isValue = true
return node
}
if commonLen < nodeBits {
// The new prefix diverges from the current node's prefix.
// We must split the current node.
commonP, _ := node.prefix.Addr().Prefix(commonLen)
splitNode := &ValueNode[T]{prefix: commonP}
// The existing node becomes a child of the new split node.
bit := getBit(node.prefix.Addr(), commonLen)
splitNode.children[bit] = node
if commonLen == pBits {
// The inserted prefix is a prefix of the node's original prefix.
// The new split node represents the inserted prefix and gets the value.
splitNode.value = value
splitNode.isValue = true
} else {
// The two prefixes diverge. Create a new child for the new prefix.
bit = getBit(addr, commonLen)
splitNode.children[bit] = &ValueNode[T]{prefix: p, value: value, isValue: true}
}
return splitNode
}
// commonLen == nodeBits, meaning the current node's prefix is a prefix of the new one.
// We need to descend to a child.
bit := getBit(addr, commonLen)
node.children[bit] = t.insert(node.children[bit], p, value)
return node
}
// Lookup finds the value associated with the most specific prefix that contains the given IP address.
func (t *ValueTrie[T]) Lookup(addr netip.Addr) (value T, ok bool) {
node := t.rootV4
if addr.Is6() {
node = t.rootV6
}
var lastFoundValue T
var found bool
for node != nil {
commonLen := commonPrefixLen(addr, node.prefix.Addr())
nodeBits := node.prefix.Bits()
// If the address doesn't share a prefix with the node, we can't be in this subtree.
if commonLen < nodeBits {
break
}
// The address is within this node's prefix. If the node holds a value,
// it's our current best match.
if node.isValue {
lastFoundValue = node.value
found = true
}
// We've matched the whole address, can't go deeper.
if commonLen == addr.BitLen() {
break
}
// Descend to the next child based on the next bit after the node's prefix.
bit := getBit(addr, nodeBits)
node = node.children[bit]
}
return lastFoundValue, found
}
// Delete removes a prefix from the trie. It returns true if the prefix was found and removed.
func (t *ValueTrie[T]) Delete(p netip.Prefix) bool {
p = p.Masked()
addr := p.Addr()
var changed bool
if addr.Is4() {
t.rootV4, changed = t.delete(t.rootV4, p)
} else {
t.rootV6, changed = t.delete(t.rootV6, p)
}
return changed
}
// delete is the recursive helper for removing a prefix from the trie.
func (t *ValueTrie[T]) delete(node *ValueNode[T], p netip.Prefix) (*ValueNode[T], bool) {
if node == nil {
return nil, false
}
addr := p.Addr()
pBits := p.Bits()
nodeBits := node.prefix.Bits()
commonLen := commonPrefixLen(addr, node.prefix.Addr())
// The prefix is not on this path.
if commonLen < nodeBits || commonLen < pBits && pBits < nodeBits {
return node, false
}
var changed bool
if pBits > nodeBits {
// The prefix to delete is deeper in the trie. Recurse.
bit := getBit(addr, nodeBits)
node.children[bit], changed = t.delete(node.children[bit], p)
} else if pBits == nodeBits {
// This is the node to delete. Unset its value.
if !node.isValue {
return node, false // Prefix wasn't actually in the trie.
}
node.isValue = false
var zero T
node.value = zero
changed = true
} else { // pBits < nodeBits
return node, false // Prefix to delete is shorter, so can't be here.
}
if !changed {
return node, false
}
// Post-deletion cleanup:
// If the node has no value and can be merged with a single child, do so.
if !node.isValue {
if node.children[0] != nil && node.children[1] == nil {
return node.children[0], true
}
if node.children[0] == nil && node.children[1] != nil {
return node.children[1], true
}
}
// If the node is now a leaf without a value, it can be removed entirely.
if !node.isValue && node.children[0] == nil && node.children[1] == nil {
return nil, true
}
return node, true
}
// Contains checks if the exact IP address exists in the trie as a full-length prefix.
func (t *ValueTrie[T]) Contains(addr netip.Addr) bool {
prefix := netip.PrefixFrom(addr, addr.BitLen())
return t.ContainsPrefix(prefix)
}
// ContainsPrefix checks if the exact prefix exists in the trie.
func (t *ValueTrie[T]) ContainsPrefix(p netip.Prefix) bool {
p = p.Masked()
addr := p.Addr()
pBits := p.Bits()
node := t.rootV4
if addr.Is6() {
node = t.rootV6
}
for node != nil {
commonLen := commonPrefixLen(addr, node.prefix.Addr())
nodeBits := node.prefix.Bits()
if commonLen < nodeBits {
// Path has diverged. The prefix cannot be in this subtree.
return false
}
if pBits < nodeBits {
// The search prefix is shorter than the node's prefix,
// but they share a prefix. e.g. search /16, node is /24.
// The /16 is not explicitly in the trie.
return false
}
if pBits == nodeBits {
// Found a node with the exact same prefix length.
// Because we also know commonLen >= nodeBits, the prefixes are identical.
return node.isValue
}
// pBits > nodeBits, so we need to go deeper.
bit := getBit(addr, nodeBits)
node = node.children[bit]
}
return false
}
// WalkValueFunc is a function called for each prefix in the trie during a walk.
// Returning false from the function will stop the walk.
type WalkValueFunc[T any] func(p netip.Prefix, v T) bool
// walk is the recursive helper for traversing the trie.
func walkValue[T any](node *ValueNode[T], f WalkValueFunc[T]) bool {
if node == nil {
return true
}
if node.isValue {
if !f(node.prefix, node.value) {
return false
}
}
if node.children[0] != nil {
if !walkValue(node.children[0], f) {
return false
}
}
if node.children[1] != nil {
if !walkValue(node.children[1], f) {
return false
}
}
return true
}
// Walk traverses the trie and calls the given function for each prefix and its value.
// If the function returns false, the walk is stopped. The order is not guaranteed.
func (t *ValueTrie[T]) Walk(f WalkValueFunc[T]) {
if !walkValue(t.rootV4, f) {
return
}
walkValue(t.rootV6, f)
}
// Merge inserts all prefixes from another Trie into this one.
func (t *ValueTrie[T]) Merge(other *ValueTrie[T]) {
other.Walk(func(p netip.Prefix, v T) bool {
t.Insert(p, v)
return true // continue walking
})
}